
Temporal Set Inversion for Animated Implicits
KAVOSH JAZAR,McGill University, Canada
PAUL G. KRY,McGill University, Canada

Fig. 1. Snapshots of an animated implicit surface at timesteps 68, 150, 265 and 330 showing in red the regions that were evaluated in each timestep to sparsely
update a 10243 voxelization of the scene only as and where is necessary to maintain bounded error in the surface. For comparison, existing approaches would
color the entire surface red in each timestep, thus wasting resources in static or slowly-evolving areas far from the motion. The runtime of our method depends
on the moving surface area per frame and achieves here a ∼ 3× speedup compared to full per-frame re-evaluation at a temporal error tolerance of 𝛿 = 0.01.

We exploit the temporal coherence of closed-form animated implicit surfaces
by locally re-evaluating an octree-like discretization of the implicit field only
as and where is necessary to rigorously maintain a global error invariant over
time, thereby saving resources in static or slowly-evolving areas far from the
motion where per-frame updates are not necessary. We treat implicit surface
rendering as a special case of the continuous constraint satisfaction problem
of set inversion, which seeks preimages of arbitrary sets under vector-valued
functions. From this perspective, we formalize a temporally-coherent set
inversion algorithm that localizes changes in the field by range-bounding its
time derivatives using interval arithmetic. We implement our algorithm on
the GPU using persistent thread scheduling and apply it to the scalar case of
implicit surface and swept volume rendering where we achieve significant
speedups in complex scenes with localized deformations like those found
in games and modelling applications where interactivity is required and
bounded-error approximation is acceptable.

CCS Concepts: • Computing methodologies→ Rendering; Animation;
Volumetric models; Massively parallel algorithms; Continuous space search; •
Mathematics of computing→ Interval arithmetic; Automatic differentia-
tion; • Information systems→ Temporal data; Uncertainty.

Additional KeyWords and Phrases: implicit surface, signed distance field, sdf,
temporal coherence, sparse voxel octree, root-finding, branch-and-bound,
global optimization, nonlinear optimization, constraint satisfaction, error
analysis, subpaving, subdivision, isosurface, differentiable programming

ACM Reference Format:
Kavosh Jazar and Paul G. Kry. 2023. Temporal Set Inversion for Animated
Implicits. ACM Trans. Graph. 42, 4, Article 1 (August 2023), 18 pages. https:
//doi.org/10.1145/3592448

Authors’ addresses: Kavosh Jazar, cryvosh@gmail.com, McGill University, Montreal,
Canada; Paul G. Kry, McGill University, Montreal, Canada, kry@cs.mcgill.ca.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/8-ART1 $15.00
https://doi.org/10.1145/3592448

1 INTRODUCTION
An animated implicit is defined by a field function 𝑓 : R𝑛 → R
parameterized at time 𝑡 by a configuration-space point C (𝑡) ∈ R𝜏 .
The roots of 𝑓 form the surface S of some volume in R𝑛 and act as
the boundary between filled regions where the field is negative and
empty regions where the field is positive. More formally,

S = {𝒑 ∈ R𝑛 | 𝑓 (𝒑, C (𝑡)) def= 𝑓𝑡 (𝒑) = 0} = 𝑓 −1𝑡 ({0}). (1)

The expressive power of this representation allows it to concisely
model unusual topological transformations in time-evolving sur-
faces. Artists in the demoscene community capitalize on these
capabilities to construct compelling 3D scenes through the blending
of implicit primitives, iterated fractals, procedural noise, and spatial
distortions in generalized smooth CSG trees [Korndörfer et al. 2015].
Arbitrary parameters of these functions are then programmatically
perturbed over time to produce realtime animations in a memory
footprint on the order of several kilobytes [Quilez 2008]. Users of im-
plicit CAD packages likewise leverage similar modelling techniques
to build robust static geometry and rely on the realtime rendering of
deforming implicits to facilitate their interactive modelling process
[Allen 2019; Schmidt 2006]. Existing rendering solutions however
cannot effectively localize these deformations in arbitrary implicits
and must thus sacrifice resolution or restrict the range of allow-
able functions to maintain interactivity while they waste resources
redundantly re-evaluating static scene regions every single frame.

We address this deficiency by tracking changes in the field through
the rigorous range-bounding [Moore 1966] of its time derivatives
to selectively re-evaluate regions only as and where is necessary
to maintain a global error invariant. Our simple scheme yields sig-
nificant speedups in complex temporally-coherent dynamic scenes
and enables higher-resolution interaction with arbitrary implicits
in computer games and modelling applications where deformations
are largely localized and bounded-error approximation is acceptable.

Our approach treats implicit volume rendering as a special case of
the continuous constraint satisfaction problem of set inversionwhich
seeks the preimage X ⊆ R𝑛 of a set Y ⊆ R𝑚 under 𝑓 : R𝑛 → R𝑚 .
We introduce this framework in Section 3, use it to formalize our

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1145/3592448
https://doi.org/10.1145/3592448
https://doi.org/10.1145/3592448

1:2 • Kavosh Jazar and Paul G. Kry

temporally coherent set inversion algorithm in Section 4, apply
our algorithm to the special computer-graphics case of animated
implicits where𝑚 = 1 and Y = [−∞, 0] in Section 5, and discuss
various extensions including swept volume rendering in Section 6.
Our code is available at github.com/cryvosh/TemporalSetInversion.

2 RELATED WORK
Here we review various computer-graphics techniques for rendering
𝑚 = 1 implicit surfaces and exploiting their temporal coherence.
Section 3.2 further discusses related work on set inversion methods.

2.1 Raytracing
Raytracing reduces the implicit rendering problem to that of a
one-dimensional search for the closest root along every ray shot
from an eye into the scene. Sphere-tracing [Hart 1996] is a popular
root-finder for this purpose due to its simplicity at the cost of
converging on only the limited class of Lipschitz-bounded distance-
like field-functions with ∥∇𝑓 ∥ ≤ 1. Segment-tracing [Galin et al.
2020] accelerates this root-finding process for implicits constructed
through the hierarchical blending of compactly-supported skeletal
primitives [Wyvill et al. 1999] for which local Lipschitz bounds over
line segments and spheres can be analytically derived. These local
bounds are often much smaller than their global counterparts, en-
abling larger, more efficient march steps. Non-linear sphere-tracing
[Seyb et al. 2019] enables the rendering of signed distance fields
warped by a class of potentially non-invertible explicit forward
space deformations like Kelvinlets [De Goes and James 2017], but
otherwise inherits the limitations of naive sphere-tracing and is
orthogonal to our approach.

Interval ray-tracers [Barth et al. 1994; De Cusatis et al. 1999; Díaz
et al. 2008; Fryazinov et al. 2010; Knoll et al. 2009; Mitchell 1990]
instead rely on rigorous range-bounding techniques like interval
[Moore 1966] and affine [Comba and Stolfi 1990] arithmetic to over-
come the convergence constraints of sphere-tracing and root-find
arbitrary non-Lipschitz field functions using coherent ray traversal.
Raytracing approaches however do not cache the roots found

during ray-traversal and must therefore rediscover the surface from
scratch in every frame, even if only the eye is moving. Our approach
instead maintains a world-space discretization of the surface that
updates only where sufficient surface displacement occurs, allowing
the eye to freely move without additional root-finding.

2.2 Meshing
Meshing strategies like marching cubes [Lorensen and Cline 1987]
and dual-contouring [Ju et al. 2002] point-sample the field over a
dense grid spanning the entire search space to construct a triangu-
lated approximation of the surface which can then be rendered via
rasterization or exported into explicit modelling and simulation
software. Global discretization approaches are therefore widely
used in implicit CAD packages [Allen 2019; Schmidt 2006]. These
techniques however miss thin features at low resolutions and scale
poorly to higher resolutions due to their cubic runtime, requiring
interactive modelling applications to drop their spatial resolution
during user interactions to maintain realtime framerates.

Our approach instead builds and efficiently maintains a sparse
octree-like discretization of the field that adaptively re-evaluates
only the regions that measurably deform in each timestep. Small
edits to the surface can therefore be made without a full-scene
re-discretization, enabling higher-resolution interactions with ani-
mated implicits. Our octree can be used to enable fast temporally-
coherent hierarchical mesh extraction [Sharp and Jacobson 2022].

2.3 Branch-and-Bound Subdivision
Branch-and-bound algorithms [Hansen 1992] recursively subdivide
space in search of the surface using range-bounding techniques
like interval arithmetic [Moore 1966] to disqualify regions that
cannot contain the surface. This in turn produces a sparse octree-
like discretization of the scene that can readily be used for rendering
purposes. Interval subdivision approaches have a long history in
computer graphics [Duff 1992; Snyder 1992; Tupper 2001] and have
recently been applied to neural implicits [Sharp and Jacobson 2022],
used for global optimization on the GPU [Sanders 2020], and aug-
mented with function-pruning techniques that locally simplify 𝑓
over the search domain [Keeter 2020].
We note these approaches solve a special scalar case of the con-

tinuous constraint satisfaction problem of set inversion, which
seeks the preimage X = 𝑓 −1 (Y) = {𝒑 ∈ R𝑛 | 𝑓 (𝒑) ∈ Y} given
𝑓 : R𝑛 → R𝑚 and Y ⊆ R𝑚 . A branch-and-bound algorithm called
SIVIA (Set Inverter via Interval Analysis) [Jaulin andWalter 1993] is
employed in general to derive such X to within a desired accuracy.
We introduce SIVIA in Section 3.2 where we further discuss the
related work on branch-and-bound rendering of implicit volumes
where 𝑚 = 1 and Y = [−∞, 0]. In Section 4 we introduce our
temporally-coherent set inversion algorithm that avoids fully re-
discretizing the entire search domain in response to changes in the
implicit field due to user interaction.

2.4 Temporal Coherence
One approach to exploiting the temporal coherence of animated
implicits involves the tracking of particles over the surface by nu-
merically integrating a derived surface velocity [Stam and Schmidt
2011]. These particles may be rendered directly [Hart et al. 2002;
Witkin and Heckbert 1994] or used to guide the deformation of
a mesh [Bouthors and Nesme 2007]. Deriving an accurate surface
velocity andmaintaining a uniform particle distribution is nontrivial.
Thus, these techniques in general cannot cope well with unusual
topological transformations and serve as a Lagrangian counterpart
to our more Eulerian discretization approach.
A second approach likewise relies on constraining the implicit

field function to hierarchical Blobtree-like blends of compactly-
supported spatially-boundable implicit primitives [Wyvill et al. 1999]
where the region-of-influence of a moving body can be derived
from the bounding-volumes of its constituent elements [Gourmel
et al. 2010; Jevans et al. 1988; Opalach and Cani 1997]. Where
such influence is non-zero, the surface must be recalculated. This
process can be accelerated using cached local approximations of
the non-deforming subtrees [Schmidt 2006; Schmidt et al. 2005].
However, for arbitrary implicits with infinitely-supported blends,
such optimizations do not readily apply. Our more general approach

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://github.com/cryvosh/TemporalSetInversion

Temporal Set Inversion for Animated Implicits • 1:3

operates at the instruction level and thus imposes little additional
structure on the implicit field function.

Beyond implicits, range-bounding techniques like interval arith-
metic are used for continuous collision detection and kinetic datas-
tructures in computer animation [Redon et al. 2005; Snyder et al.
1993; Wang et al. 2021; Zhang et al. 2007]. Our approach is similar
in spirit to the adaptive rigidification scheme of Mercier-Aubin et al.
[2022] which accelerates softbody simulations by locally merging
undeforming elements in each timestep to save per-frame resources
in low-deformation areas.

3 PRELIMINARIES
In this sectionwe review the necessary background for our approach.
This includes an overview of interval arithmetic, an introduction to
set inversion, and an in-depth discussion on recent related work in
computer graphics. We use the mathematical machinery covered
here to formalize our error invariants in Sections 4.1 and 4.5.

3.1 Interval Arithmetic
Interval arithmetic [Moore 1966; Young 1931] is a generalization of
real arithmetic to closed intervals that lets us efficiently and auto-
matically derive guaranteed bounds on the range of real functions
over interval domains. It is used in nonlinear global optimization to
rigorously prove statements about sets of uncountably many reals
in a finite number of operations [Hansen 1992; Jaulin et al. 2001].

Definition 3.1. An interval [𝑥] of R is a closed set defined by its
upper and lower bounds 𝑥−, 𝑥+ ∈ R = R ∪ {−∞,∞} via

[𝑥] = [𝑥−, 𝑥+] = {𝑥 ∈ R | 𝑥− ≤ 𝑥 ≤ 𝑥+}. (2)

Definition 3.2. Given unordered endpoints 𝑎, 𝑏 ∈ R we construct
a valid guaranteed-nonempty interval between them via

[𝑎, 𝑏]𝑢 = [min(𝑎, 𝑏),max(𝑎, 𝑏)] . (3)

Definition 3.3. The width of an interval [𝑥] is given by

𝑤 ([𝑥]) = 𝑥+ − 𝑥− . (4)

The width of ∅ ∈ [R] is 0 and the width of [−∞,∞] is∞.
Definition 3.4. We let [R] represent the set of all intervals of R.

Note that a zero-width interval is equivalent to a real number in R.

Interval arithmetic works by overloading the operations of real
arithmetic with their interval analogues. The elementary rules of
addition, subtraction, and multiplication, for example, are given by

[𝑥] + [𝑦] = [𝑥− + 𝑦−, 𝑥+ + 𝑦+],
[𝑥] − [𝑦] = [𝑥− − 𝑦+, 𝑥+ − 𝑦−],

[𝑥] · [𝑦] = [min(𝑥−𝑦−, 𝑥−𝑦+, 𝑥+𝑦−, 𝑥+𝑦+),
max(𝑥−𝑦−, 𝑥−𝑦+, 𝑥+𝑦−, 𝑥+𝑦+)] .

(5)

The range of any continuous monotonic function𝑚 : R→ R can in
general be bounded using the endpoints of the input interval via

𝑚([𝑥]) = [min(𝑚(𝑥−),𝑚(𝑥+)),max(𝑚(𝑥−),𝑚(𝑥+))] (6)

Continuous non-monotonic function are bounded through the de-
composition of the input interval intomonotone pieces using branch-
ing operations. Squaring for example can be defined via

[𝑥]2 =
{
[min(𝑥2−, 𝑥2+),max(𝑥2−, 𝑥2+)], if 0 ∉ [𝑥]
[0,max(𝑥2−, 𝑥2+)], otherwise.

(7)

There rules can be composed to range-bound any function 𝑓 whose
constituent operations admit interval analogues, producing an “in-
terval extension” of 𝑓 which we can bound over an interval [𝑥] via
𝑓 ([𝑥]) ∈ [R]. Such functions satisfy an inclusion property given by

𝑓 ([𝑥]) ⊇ {𝑓 (𝑥) | 𝑥 ∈ [𝑥]}. (8)
These interval extensions are said to be convergent if𝑤 (𝑓 ([𝑥])) →
0 as𝑤 ([𝑥]) → 0. For the purposes of our algorithm, we require only
that 𝑓 , when queried on smaller and smaller intervals [𝑥], converges
to the true range of the function over [𝑥] which, for discontinuous
𝑓 , may be nonzero. This is further discussed in Section 3.2.1.

Definition 3.5. An interval vector, or box, [𝒙] ofR𝑛 is a set defined
by the cartesian product of 𝑛 intervals of [R] via

[𝒙] =
𝑛?
𝑖=1
[𝑥𝑖] = [𝑥1] × [𝑥2] × · · · × [𝑥𝑛] . (9)

Definition 3.6. Given arbitrary unordered points 𝒂, 𝒃 ∈ R𝑛 we
construct a valid guaranteed-nonempty box with corners 𝒂, 𝒃 via

[𝒂, 𝒃]𝑢 =

𝑛?
𝑖=1
[𝑎𝑖 , 𝑏𝑖]𝑢 . (10)

Definition 3.7. The width of a box [𝒙] is given by the maximal
width of its components such that

𝑤 ([𝒙]) = max
1≤𝑖≤𝑛 (𝑥𝑖+ − 𝑥𝑖−) . (11)

Definition 3.8. We let [R]𝑛 represent the set of all boxes of R𝑛 .

By passing interval bounds as the arguments to multivariate func-
tions, we can obtain bounds on the image of a function 𝑓 : R𝑛 → R𝑚
over an axis-aligned box of R𝑛 . This capability is what powers the
set inversion algorithm described in Section 3.2.

3.1.1 Overapproximation. Interval arithmetic bounds are guaran-
teed to enclose the true range of possible results, but are not neces-
sarily tight. Suppose for example we let [𝑥] = [−1, 1] and perform
the operation 𝑥 − 𝑥 . Intuitively, we expect this to yield zero, yet
interval arithmetic returns [−2, 2] as it cannot deduce that the two
arguments to the subtraction are not independent. This effect is
therefore known as the dependency problem, and explains why the
squaring operation [𝑥]2 defined in Equation 7 yields tighter bounds
than [𝑥] · [𝑥] using the multiplication rule from Equation 5. Interval
bounds can likewise be made arbitrarily bad by adding to 𝑓 factors
of cos(𝑥) + cos(𝑥 + 𝜋) as interval arithmetic cannot deduce the two
terms cancel to zero. We exploit this effect in Section 3.2.1 to explain
how existing approaches in computer graphics deal with this issue.
Higher-order range-bounding techniques like affine arithmetic

[Comba and Stolfi 1990] or Taylor models [Berz and Hoffstätter
1998] can instead be used to obtain tighter enclosures in exchange for
added complexity [Ratz 1996; Vu et al. 2009]. Recent work by Sharp
and Jacobson [2022] applies these approaches to neural implicits.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:4 • Kavosh Jazar and Paul G. Kry

Fig. 2. Subdivision of an implicit SIGGRAPH logo from 42 to 1282 quadtree resolution. We color 𝑃𝑖 in red, 𝑃𝑖𝑛 in blue, and 𝑃𝑜𝑢𝑡 in white.

3.2 Set Inversion via Interval Analysis
Set inversion is the continuous constraint satisfaction problem of
characterizing a feasible set X = 𝑓 −1 (Y) = {𝒑 ∈ R𝑛 | 𝑓 (𝒑) ∈ Y}
given 𝑓 : R𝑛 → R𝑚 and Y ⊆ R𝑚 . It is solved for range-boundable
𝑓 to arbitrary accuracy using a branch-and-bound [Hansen 1992]
algorithm called SIVIA (Set Inverter via Interval Analysis) [Jaulin
and Walter 1993] which encloses X between sets of boxes called
subpavings [Jaulin et al. 2001]. These sets naturally form octree-like
hierarchies that we can readily use for rendering purposes.

Definition 3.9. A subpaving 𝑃𝑠 of R𝑛 is a set of disjoint nonzero-
width boxes of [R]𝑛 . Disjoint boxes have non-overlapping interiors.
Two subpavings are disjoint if their elements are pairwise disjoint.

Definition 3.10. A paving of𝐷 ⊆ R𝑛 is a subpaving 𝑃𝑠 that exactly
covers 𝐷 such that

⋃
𝑃𝑠 = 𝐷 . Where not ambiguous,

⋃
𝑃𝑠 may be

written simply as 𝑃𝑠 .

Definition 3.11. A box [𝒃] is feasible if and only if [𝒃] ⊆ X,
infeasible if and only if [𝒃] ∩ X = ∅, and ambiguous otherwise.

Given a bounded search domain [𝑫] ∈ [R]𝑛 and spatial error
tolerance 𝜀 ∈ R, SIVIA produces a paving 𝑃 of [𝑫] from three
disjoint subpavings 𝑃𝑖𝑛 , 𝑃𝑜𝑢𝑡 , and 𝑃𝑖 that approximate X such that

𝑃𝑖𝑛 ∪ 𝑃𝑜𝑢𝑡 ∪ 𝑃𝑖 = [𝑫],
𝑃𝑖𝑛 ⊆ X ⊆ 𝑃𝑖𝑛 ∪ 𝑃𝑖 and X ∩ 𝑃𝑜𝑢𝑡 = ∅,

∀[𝒃] ∈ 𝑃𝑖 ,𝑤 ([𝒃]) ≤ 𝜀 and 𝑓 ([𝒃]) ⊈ Y and 𝑓 ([𝒃]) ∩ Y ≠ ∅,
(12)

where 𝑃𝑖 is comprised of indeterminate boxes [𝒃] that cannot be
proven feasible or infeasible from only their image under 𝑓 via

𝑓 ([𝒃]) ⊆ Y =⇒ [𝒃] is feasible,
𝑓 ([𝒃]) ∩ Y = ∅ =⇒ [𝒃] is infeasible. (13)

This paving is built by recursively subdividing [𝑫] until all inde-
terminate boxes are sufficiently small, thereby naturally producing
an octree-like hierarchy via Algorithm 1 where 𝑃𝑖𝑛 approaches the
boundary of X (denoted 𝜕X) from the inside, 𝑃𝑜𝑢𝑡 approaches 𝜕X
from the outside, and 𝑃𝑖 covers 𝜕X, as visualized in Figure 2. Note
that using the tools discussed here, a box [𝒃] cannot be proven to
be ambiguous, i.e., on the boundary of X. Instead, it can only be
proven not ambiguous using Equation 13.We note this formalization
implicitly underlies the related work on interval subdivision in
computer graphics [Duff 1992; Gleicher and Kass 1992; Keeter 2020;
Sharp and Jacobson 2022; Snyder 1992; Tupper 2001].

Algorithm 1: SIVIA (Set Inverter Via Interval Analysis)
Input: Range-boundable function 𝑓 : R𝑛 → R𝑚 , set to

invert Y ⊆ R𝑛 , initial search domain [𝑫], spatial
error tolerance 𝜀 ∈ R

Output: Paving 𝑃𝑖𝑛, 𝑃𝑜𝑢𝑡 , 𝑃𝑖 of [𝑫]
1 𝑃𝑖𝑛 ← ∅, 𝑃𝑜𝑢𝑡 ← ∅, 𝑃𝑖 ← ∅
2 Q←Queue()
3 Q.enqeue([𝑫]);
4 while Q ≠ ∅ do
5 [𝒃] = Q.deqeue()
6 if 𝑓 ([𝒃]) ⊆ Y then
7 𝑃𝑖𝑛 ← 𝑃𝑖𝑛 ∪ [𝒃]
8 else if 𝑓 ([𝒃]) ∩ Y = ∅ then
9 𝑃𝑜𝑢𝑡 ← 𝑃𝑜𝑢𝑡 ∪ [𝒃]

10 else if 𝑤 ([𝒃]) ≤ 𝜀 then
11 𝑃𝑖 ← 𝑃𝑖 ∪ [𝒃]
12 else
13 Q.enqeue([𝒃𝒋]) for [𝒃 𝑗] ∈ Subdivide([𝒃])
14 return {𝑃𝑖𝑛, 𝑃𝑜𝑢𝑡 , 𝑃𝑖 }

Fig. 3. Here we add a cos(𝑥) + cos(𝑥 + 𝜋) term to an implicit SIGGRAPH
logo to exaggerate the effects of interval overapproximation and produce a
thick indeterminate layer visualized in red (left). Keeter-style point sampling
of the indeterminate boxes gives a more accurate result (right).

3.2.1 Point Sampling. Note that 𝑃𝑖𝑛 → X as 𝜀 → 0. However, for
any 𝜀 > 0, the width of the indeterminate subpaving 𝑃𝑖 may be
arbitrarily large as the converse of Equation 13 does not hold due
to interval overapproximation. Indeterminate boxes are therefore
not necessarily ambiguous, but may be feasible or infeasible as

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Temporal Set Inversion for Animated Implicits • 1:5

Fig. 4. This field uses the modulo operator to repeat space and instance
a blobby sphere. The bottom figure shows the standard SIVIA solution
where 𝑃𝑖𝑛 and 𝑃𝑖 are visualized as filled boxes resulting in false planes
between the instanced subspaces consisting of indeterminate boxes that
straddle the discontinuities in the field. Point sampling (top) resolves this
issue and produces a more accurate paving. The extensive subdivision in
these areas however remains visible in our octree density visualization
where per-pixel darkness corresponds to the number of indeterminate boxes
marched-through during the raytracing pass.

well [Jaulin and Walter 1993]. To disambiguate such boxes for
rendering purposes, Keeter [2020] point-samples 𝑓 once in the center
of each indeterminate leaf box to approximate its feasibility. Figure 3
visualizes this process by adding to 𝑓 a cos(𝑥) + cos(𝑥 + 𝜋) term to
exaggerate the effects of interval overapproximation, leading to a
thick error layer that point-sampling effectively cleans up. Sharp
and Jacobson [2022] augment this approach by point-sampling such
boxes 6 times, once in the center of each face. We note however that
both approaches fail to capture thin features like planes defined by
absolute values of implicit field functions where the probability that
a point-sample lands within the implicit volume is effectively zero.
Dilating the desired isosurface by subtracting constants from 𝑓 to
expand and therefore recover such features can work for SDFs but
not for arbitrary non-Lipschitz-bounded field functions.

Keeter [2020] claims their SIVIA variant described in Section 3.2.2
requires𝐶0 continuity in the surface, but we note that the field need
not be continuous for rendering purposes and in fact, a large fraction
of functions found on platforms like Shadertoy are discontinuous
due to their use of the modulo operator to repeat space and thereby
instance objects [Korndörfer et al. 2015]. Such fields yield non-
convergent inclusion functions where the theoretical guarantee
that 𝑃𝑖 → 𝜕X as 𝜀 → 0 no longer applies, but this does not
effect the correctness of SIVIA for our needs as Equation 12 still
holds. Efficiency on the other hand is reduced in such cases as
interval arithmetic cannot deduce the infeasibility of boxes whose
images overlap boundary-straddling discontinuities. Consider for

Fig. 5. Left image shows autodiff-derived surface normals which appear
incorrect due to a modulo-induced discontinuity in the field that overlaps
the surface and cuts it in half. The right image shows the normals one would
expect from such a surface, here derived via large-stencil finite-difference.

example the function 𝑓 (𝑥) = mod(𝑥, 1) − 0.5 over the domain
[𝑥] = [−0.1, 0.1]. This function contains no roots over [𝑥] yet
0 ∈ 𝑓 ([𝑥]) = [−0.4, 0.4] and thus SIVIA will subdivide down to
the minimal box size around the discontinuity at 𝑥 = 0 in search of
roots that do not exist. Figure 4 illustrates this effect where the zero-
straddling discontinuities in the field are covered by indeterminate
boxes in 𝑃𝑖 forming solid planes between the instanced subspaces.
Keeter-style point sampling however effectively eliminates this issue.
If such discontinuities overlap the surface then the normals may
not be well-defined as the gradients of the field as illustrated by
Figure 5. More plausible normals can in some cases be derived via
large-stencil finite differences or otherwise recovered from the local
octree topology.

3.2.2 Function Approximation. Keeter [2020] notes that subexpres-
sions of 𝑓 of the form max(𝑔(𝑥), ℎ(𝑥)) (and min analogously) can
be simplified in regions where interval arithmetic proves that 𝑔(𝑥)
is always greater than or equal to ℎ(𝑥). Within such regions, the
max will never select ℎ(𝑥) and it can thus be pruned from the local
𝑓 by what amounts to an optimizing compiler. This accelerates the
evaluation of 𝑓 in the child subregions so long as there is enough free
memory to store the specialized program. If not, the children will
simply reuse their parent’s programs in subsequent subdivisions.

From a differentiable programming perspective, Keeter’s function
pruning algorithm simply removes from 𝑓 every subexpression 𝑠 for
which 𝜕𝑓/𝜕𝑠 = 0 over the working box [𝒃] where custom interval
gradient rules always return 1 for every instruction, except for max
(and min analogously) whose gradient is instead defined via

∇max([𝑔], [ℎ]) =

(0, 1), if 𝑔+ < ℎ−
(1, 0), if ℎ+ < 𝑔−
(1, 1), otherwise.

(14)

Here, the partial derivatives 0 and 1 returned by this rule represent
zero-width intervals to be used in an interval autodiff system that
replaces gradient rules with their interval analogues.

We note this function pruning approach can easily be generalized
beyond just min and max instructions by approximating subexpres-
sions whose influence over 𝑓 is below some global threshold. To
derive this influence, one needs an approximation 𝑠′ of 𝑠 over [𝒃]
with an associated absolute error bound Δ𝑠 that can then propagate
through 𝑓 using first-order error analysis. The forward interval trace
of 𝑓 provides us a crude constant approximation 𝑠′ = Mid(𝑠 ([𝒃]))
with Δ𝑠 = 𝑤 (𝑠 ([𝒃]))/2. We can then derive the error in 𝑓 due

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:6 • Kavosh Jazar and Paul G. Kry

to a substitution of 𝑠 with 𝑠′ using first-order error analysis with
standard interval gradient rules as discussed in Section 4.2 via

[Δ𝑓] = Δ𝑠 · 𝜕𝑓
𝜕𝑠
([𝒃]) . (15)

This generalization appears in earlier optimization work by Deussen
et al. [2016]; Riehme and Naumann [2015]; Vassiliadis et al. [2016].
Having implemented these techniques on the GPU, we note their
main limitation is memory usage. In difficult scenarios, one will
often run out of memory before enough approximated programs
can be stored to significantly improve runtime performance.

3.2.3 Parallelization. SIVIA recursively subdivides some areasmore
densely than others leading to an unbalanced, irregular workload
not easily mappable onto modern GPUs. Existing implementations
subdivide the search-space breadth-first and evaluate each octree
level in parallel. Between each level they execute a filtering step
to disregard unambiguously filled or empty boxes that require
no further investigation. This effectively reduces the sparse set
of evaluated boxes into a compact set of indeterminate boxes to
subdivide in the next parallel dispatch.

Keeter [2020] implements this filtering step using a bump alloca-
tor, where each indeterminate box at the current level atomically
increments a single integer to assign itself an index into the compact
set. Sanders [2020] and Sharp and Jacobson [2022] instead rely on
a parallel prefix-sum scan operation [Merrill and Garland 2016]
via CUDA and JAX respectively as implementing this operation
efficiently in cross-platform compute shaders is not trivial [Levien
2021]. Both approaches require multiple shader stages and are
likewise difficult to directly adapt to a long-running program like
ours where data must persist between timesteps. We outline our
parallelization strategy in Section 4.6.1.

4 TEMPORAL SIVIA
In this section we extend SIVIA to support fast bounded-error
updates to 𝑃𝑖𝑛 , 𝑃𝑜𝑢𝑡 , and 𝑃𝑖 as the arguments of 𝑓 vary in time. We
assume that time advances in discrete steps and that 𝑓 : R𝑛 → R𝑚
is a range-boundable function parameterized by 𝜏 time-varying
parameters encapsulated in a configuration-space point C (𝑡) ∈ R𝜏
whose position in each new timestep is provided by an external sys-
tem like user-input and whose position in all previous timesteps is
known and accessible. We first focus on the special case of animated
implicits defined by scalar𝑚 = 1 functions where Y = [−∞, 0] and
X(𝑡) = 𝑓 −1𝑡 (Y) = {𝒑 ∈ [𝑫] | 𝑓 (𝒑, C (𝑡)) ∈ Y}, and later generalize
to vector-valued𝑚 > 1 functions with arbitrary Y in Section 4.5.

4.1 Error Invariant
Our goal is to exploit the temporal coherence of X(𝑡) to avoid
redundantly repaving the entire search domain [𝑫] from scratch in
every timestep. We instead wish to build and efficiently maintain a
paving 𝑃 ′ = {𝑃 ′

𝑖𝑛
, 𝑃 ′𝑜𝑢𝑡 , 𝑃 ′𝑖 } of X(𝑡) by selectively re-paving regions

only as and where is necessary to approximate the ground-truth
SIVIA paving 𝑃 of X(𝑡) to within a user-specified error tolerance
𝛿 ∈ R at all times. This means we are willing to tolerate fluctuations
of up to 𝛿 in the field before updating 𝑃 ′ and therefore accumulate
error in 𝑃 ′ within a bounded neighborhood of 𝑃𝑖 in the form of

misclassified boxes. More formally, we guarantee that

𝑃 ′𝑖𝑛 ⊆ 𝑓 −1𝑡 ([−∞, 𝛿]),
𝑃 ′𝑜𝑢𝑡 ⊆ 𝑓 −1𝑡 ([−𝛿,∞]),

∀[𝒃] ∈ 𝑃 ′𝑖 ,𝑤 ([𝒃]) ≤ 𝜀 and 𝑓𝑡 ([𝒃]) ∩ [−𝛿, 𝛿] ≠ ∅.
(16)

Note that 𝑃 ′ → 𝑃 as 𝛿 → 0 and that the width of the 𝑓 −1𝑡 ([−𝛿, 𝛿])
error layer fluctuates over [𝑫] according to the local Lipschitz
bounds of 𝑓 . Within the 𝜀-width neighborhood of this layer, we
make no guarantees about the correctness of 𝑃 ′ but outside it, 𝑃 ′
must match 𝑃 exactly. We show the visual consequences of this
invariant in Section 5, generalize it in Section 4.5, and discuss an
alternative approach in Section 6.1. This invariant was inspired by
the formalization of Thick SIVIA by Desrochers and Jaulin [2017].

4.2 Measuring Change
We now wish to bound the change [Δ𝑓] in the field over a box [𝑩]
over an interval of time [𝑡] = [𝑡−, 𝑡+] to later determine if a paving
of [𝑩] built at 𝑡− requires updates to satisfy our error invariant at 𝑡+.
This bound must satisfy an inclusion property such that insufficient
change measured over [𝑩] implies insufficient change at every point
within. More formally, we require that

∀[𝒃] ⊆ [𝑩], 𝑓 ([𝒃], 𝑡+) − 𝑓 ([𝒃], 𝑡−) ⊆ [Δ𝑓] . (17)

Note the finite difference of intervals 𝑓 ([𝑩], 𝑡+) − 𝑓 ([𝑩], 𝑡−) over
all of [𝑩] fails to satisfy the desired inclusion property and is
unsuitable for our purposes. Consider for example the function
𝑓 (𝑥, 𝑡) = cos(𝑥 + 𝑡) over the domain [𝑥] = [0, 2𝜋]. As time evolves,
the roots of this function move yet its range over [𝑥] does not
change. The finite difference therefore yields zero and gives no
insight into whether sufficient change has occurred in the domain.
We instead turn to first-order error analysis and range-bound the
time-derivative of 𝑓 over [𝑩] over [𝑡] to measure [Δ𝑓] via

[Δ𝑓] = (𝑡+ − 𝑡−) · 𝑑 𝑓
𝑑𝑡
([𝑩], [𝑡]) . (18)

We note that 𝑓 need not be continuous in space nor differentiable
in time for this bound to be defined. Consider for example the
function 𝑓 (𝑥, 𝑡) = ⌊𝑥⌋+max(0, 𝑡) over [𝑥] = [0, 5] over [𝑡] = [−1, 1].
Using the gradient rule for max from Equation 14, we find the
time derivative of 𝑓 over this domain is bounded by [0, 1] and thus
[Δ𝑓] = [0, 2] as desired. Discontinuous functions of time likewise
produce useful gradients so long as they are locally continuous
over the queried time interval. Consider for example the function
𝑓 (𝑥, 𝑡) = 𝑥 + ⌊𝑡⌋ over any [𝑥] over [𝑡] = [2.4, 2.6] where [Δ𝑓] yields
zero as desired if the gradient of floor is defined by

𝜕

𝜕𝑡

⌊
[𝑡]

⌋
=

{
[0, 0], if ⌊𝑡−⌋ = ⌊𝑡+⌋
[−∞,∞], otherwise.

(19)

More generally, if 𝑓 is a function of an interactively-adjustable
parameter C(𝑡) ∈ R whose value over [𝑡] may decrease, then we
must differentiate 𝑓 over the nonempty interval of configuration-
space with endpoints C(𝑡−) and C(𝑡+) via

[Δ𝑓] = (C(𝑡+) − C(𝑡−)) · 𝑑 𝑓
𝑑C ([𝑩], [𝑐])

where [𝑐] = [C(𝑡−), C(𝑡+)]𝑢 .
(20)

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Temporal Set Inversion for Animated Implicits • 1:7

We note that [Δ𝑓] maywildly overestimate the change if 𝜕𝑓/𝜕𝑡 is not
tightly bounded. Consider for example the function 𝑓 (𝑥, 𝑡) = 𝑥 +√𝑡
over [𝑥] = [0, 1] over [𝑡] = [0, 4]. The time derivative of 𝑓 over this
domain is bounded by [0.25,∞] and thus [Δ𝑓] = [0.5,∞]. However,
the true range of 𝑓 itself over [𝑥] is only [0, 3] and thus the field at
no point in [𝑥] could have changed by more than ±3 units from 𝑡−
to 𝑡+. We can exploit this fact to better approximate [Δ𝑓] via

[Δ𝑓] =𝑊 ∩ (C(𝑡+) − C(𝑡−)) · 𝑑 𝑓
𝑑C ([𝑩], [𝑐])

where [𝑐] = [C(𝑡−), C(𝑡+)]𝑢
and𝑊 = 𝑤 (𝑓 ([𝑩], [𝑐])) · [−1, 1] .

(21)

More generally, if 𝑓 is a function of 𝜏 interactively-adjustable pa-
rameters encapsulated by C (𝑡) ∈ R𝜏 then we must differentiate it
over the nonempty axis-aligned box of configuration space with
corners C (𝑡−) and C (𝑡+) to derive our final scalar [Δ𝑓] via

[Δ𝑓] =𝑊 ∩
𝜏∑︁
𝑖=1
(C𝑖 (𝑡+) − C𝑖 (𝑡−)) · 𝜕𝑓

𝜕C𝑖
([𝑩], [𝒄])

where [𝒄] = [C𝑖 (𝑡−), C𝑖 (𝑡+)]𝑢
and𝑊 = 𝑤 (𝑓 ([𝑩], [𝒄])) · [−1, 1] .

(22)

Note thatX(𝑡) is a pure function of C (𝑡) and thus we need not know
the true range of C over [𝑡], i.e., between timesteps, to compare
X(𝑡−) and X(𝑡+). This allows our technique to work in interactive
environments where such interim parameter values are unknow-
able. Consider for example the functions 𝑓1 (𝑥, 𝑡) = 𝑥 + cos(𝑡) and
𝑓2 (𝑥, C(𝑡)) = 𝑥 + C(𝑡) over any domain [𝑥] over [𝑡] = [0, 2𝜋]
where C(𝑡−) = C(𝑡+) = 0 are two provided samples of cos(𝑡). That
is, C(𝑡) = cos(𝑡) is a function whose value we know only at the
endpoints of the time interval. In this case, our change query yields
[Δ𝑓1] = [−2𝜋, 2𝜋] and [Δ𝑓2] = 0 as desired. Indeed we can evaluate
any subexpression of 𝑓 which depends solely on time between its
values at 𝑡− and 𝑡+ instead of over [𝑡] to obtain tighter bounds.

Computing time-derivatives with automatic differentiation in-
volves gradient evaluation over the forward interval trace of 𝑓 .
This extra computation naturally introduces extra interval over-
approximation into the gradient bounds which does not exist in
the original bounds on 𝑓 itself. In practice, these gradient bounds
are often extremely conservative leading to reduced efficiency of
our algorithm. The more sophisticated range-bounding techniques
discussed in Section 3.1.1 can be employed to tighten them.

4.3 Updating Pavings
Our goal now is to use our change query to efficiently update our
paving 𝑃 ′ initialized to 𝑃 at time 𝑡− such that it satisfies our error
invariant at some new time 𝑡+. Intuitively, we plan to recursively
re-pave the domain with SIVIA as usual, but without recursing into
the existing boxes over which we can prove insufficient change has
occurred. In such regions, our invariant remains satisfied and thus
no re-evaluation is necessary. We will then repeat this updating
procedure in every new timestep to maintain 𝑃 ′.
A first approach may be to simply measure change over just

the latest timestep, starting from the root and recursing deeper
into boxes where such change is sufficiently large. This approach,
however, fails to capture the dynamics of a slowly evolving field

0 2 4 6 8 10

5

4

3

2

1

Time

O
ct
re
e
D
ep
th

Fig. 6. Cross-section of our octree structure at a point across time showing
how the large boxes near the root of our octree (top) evaluate more
frequently than the smaller boxes deeper down the hierarchy (bottom)
where time-derivatives are more tightly bounded. The width of each box
represents the time interval over which the evaluation occured and the
redness indicates the amount of accumulated error within the box at that
level in the hierarchy at the end of the time interval. Gaps in the evaluations
are caused by instant evaluation due to the fast optimization of Section 4.4.

where over no single timestep does the change anywhere exceed 𝛿 .
In this case, 𝑃 ′ will never update and its error will grow unbounded.
We therefore seek a method that evaluates 𝑓 over multiple timesteps.

A second approach may be to store in each box [𝒃] a timestamp
[𝒃] .𝑡 ∈ R that represents the time at which the change to the
field within [𝒃] last crossed our error threshold and its interior
was recursively re-paved. Each re-evaluation of [𝒃] then measures
change over the time interval [[𝒃] .𝑡, 𝑡+] stretching from its time
of last re-paving to the current time 𝑡+. If this change exceeds our
threshold and [𝒃] remains indeterminate then we update [𝒃] .𝑡 to
𝑡+ and recurse into its children.

Under a slowly evolving field, the root box enclosing the search do-
main will now simply evaluate over longer and longer time intervals
until the change eventually exceeds 𝛿 and its children are updated
in turn. Indeed this approach works due to the inclusion property
of interval arithmetic, but is not optimal as each successive query
that fails to update the stored timestamp will run over ever-growing
time intervals that introduce extra interval overapproximation and
thus lead to unnecessary re-paving. We therefore seek a method for
accumulating the change that happens over many small timesteps
instead of few large ones.
Our third and final approach is to store in each box [𝒃] both a

timestamp [𝒃] .𝑡 indicating now the time this box was last queried
and an accumulated error [𝒃] .𝛿 ∈ R which tracks the total change
to the field in this box since it last crossed our error threshold and
had its interior recursively re-paved. This timestamp then updates
whenever the box is queried for change, and these changes accrue
inside [𝒃] .𝛿 until they eventually cross our error threshold. If [𝒃]
remains indeterminate when this occurs then we reset [𝒃] .𝛿 to 0
and recurse into its children.
Under a slowly evolving field, the root box enclosing the search

domain will now be queried for change over every latest timestep
until the changes accumulate beyond our error tolerance. Note that
[𝒃] .𝑡 is hierarchically organized, i.e., a child cannot have a more
recent timestamp than its parent. However, [𝒃] .𝛿 values have no

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:8 • Kavosh Jazar and Paul G. Kry

such structure and thus a child may have more or less error than its
parent. A cross-sectional view of this hierarchy at a point over time
is shown in Figure 6 and a formal implementation of our approach
is presented in Algorithm 2.

4.4 Fast Evaluations
The approach described thus far re-uses the forward-pass of the
change-measuring evaluations to deduce the feasibility of each
box. The approach works well for slowly-evolving surfaces but
quickly degrades in performance beyond even per-frame SIVIA
for fast-moving surfaces. Fundamentally, the issue is that we are
evaluating 𝑓 over intervals of time, yet only care about the state
of 𝑃 ′ at the current instant in time. If a box [𝒃] is indeterminate at
time [𝒃] .𝑡 then, by the inclusion property of interval arithmetic, it
will necessarily also be indeterminate over any time interval that
contains [𝒃] .𝑡 . As a result, our current algorithm wastes resources
subdividing down around the indeterminate boxes that contained
the surface in the previous timestep yet are empty in the current
timestep, effectively doubling our workload. This effect manifests as
a ghost-like region that follows fast-moving surfaces in our octree-
density visualization shown in Figure 7.

Our solution to this problem is to simply define a threshold 𝜅 ∈ R
such that if the measured change to the field over an indeterminate
box [𝒃] in a single evaluation exceeds 𝜅 then we set a new property
[𝒃] .fast to true and evaluate the children of [𝒃] not over an interval
of time but at the current instant, just to check if there is anything
still there. If a child box is non-indeterminate then we stop searching,
otherwise we again attempt time-interval evaluation in the grand-
children. This leads quickly-evolving areas to alternate between
time-instant and time-interval evaluation as we descend down the
octree as shown in Figure 6 where gaps in the time intervals indicate
fast evaluations.

Since no change can occur over an instant in time, the indetermi-
nate instant-evaluated children of fast boxes cannot measure change
nor decide for themselves whether to recursively re-evaluate their
children or not. For correctness, we thus force all such boxes to
re-evaluate their children in turn. Suppose for example a box [𝒃]
is marked as “fast”. Each of [𝒃]’s children are then evaluated at
an instant in time, and all of their children ([𝒃]’s grandchildren)
are forced to re-evaluate. This optimization may therefore reduce
performance in some cases as it is possible that without, the mea-
sured change in [𝒃]’s children would not warrant further sub-box
evaluation. From our testing, such cases seem exceedingly rare.
This simple scheme effectively alleviates the described perfor-

mance penalties of time-interval evaluation and additionally helps
regulate the extra interval overapproximation it introduces. We find
from our testing that the exact value of 𝜅 does not significantly
influence performance so long as it is nonzero and within an order
of 𝛿 . All of our tests in Section 5 use 𝜅 = 𝛿 .

4.5 Generalization
We have thus far focused on the scalar𝑚 = 1 field functions used for
implicit volume rendering where Y = [−∞, 0], but our algorithm
easily extends to vector-valued𝑚 > 1 functions with arbitrary Y
through component-wise generalization of our previous discussion.

Fig. 7. Two snapshots of an animated implicit torus translating quickly from
left to right. The per-pixel darkness indicates the number of indeterminate
boxes marched-through during the raytracing pass. Regions colored red
were evaluated in the latest timestep to indicate where detectable motion
is occuring. Here we see ghosting artifacts where the previous-timestep
surface persists in the octree structure. These regions were indeterminate at
the previous timestep and therefore remain indeterminate when evaluated
over the latest timestep, thus degrading our performance.

In this case, our temporal error tolerance and fast threshold are given
by vectors 𝜹,𝜿 ∈ R𝑚 encoding the respective quantities along each
axis of the codomain. Our error invariant from Equation 16 becomes

𝑃 ′𝑖𝑛 ⊆ 𝑓 −1𝑡 (Y′𝑖𝑛),
𝑃 ′𝑜𝑢𝑡 ⊆ 𝑓 −1𝑡 (Y′𝑜𝑢𝑡),

∀[𝒃] ∈ 𝑃 ′𝑖 ,𝑤 ([𝒃]) ≤ 𝜀 and 𝑓𝑡 ([𝒃]) ∩ (Y′𝑖𝑛 ∩ Y′𝑜𝑢𝑡) ≠ ∅
(23)

where Y′
𝑖𝑛

and Y′𝑜𝑢𝑡 are given by the Minkowski sum of the box
[𝒅] = [−𝜹1, 𝜹1] × · · · × [−𝜹𝑚, 𝜹𝑚] with Y and R𝑚 \ Y such that

Y′𝑖𝑛 =
⋃
𝒑 ∈ Y

𝒑 + [𝒅] and Y′𝑜𝑢𝑡 =
⋃

𝒑 ∈ R𝑚\Y
𝒑 + [𝒅] . (24)

Our change measure [Δ𝑓] becomes a vector quantity [𝚫𝒇] which
satisfies an inclusion property analogous to Equation 17 given by

∀[𝒃] ⊆ [𝑩],∀𝑗 ∈ [1 . . .𝑚], 𝑓 ([𝒃], 𝑡+) 𝑗 − 𝑓 ([𝒃], 𝑡−) 𝑗 ⊆ [𝚫𝒇] 𝑗 (25)

which leads to a generalized [𝚫𝒇] analogue of Equation 22 given by

[𝚫𝒇] =
𝑚?
𝑗=1

(
𝑊𝑗 ∩

𝜏∑︁
𝑖=1

ΔC𝑖 ·
𝜕𝑓𝑗

𝜕C𝑖
([𝑩], [𝒄])

)
where [𝒄] = [C𝑖 (𝑡−), C𝑖 (𝑡+)]𝑢

and𝑊𝑗 = 𝑤 (𝑓 ([𝑩], [𝒄]) 𝑗) · [−1, 1]
and ΔC𝑖 = (C𝑖 (𝑡+) − C𝑖 (𝑡−)) .

(26)

The accumulated error [𝒃] .𝛿 stored in each box likewise becomes an
𝑚-dimensional interval vector [𝒃] .𝜹 . In practice one could instead
store only the maximal component of this quantity to save memory.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Temporal Set Inversion for Animated Implicits • 1:9

4.6 Implementation
In this section we discuss our GPU implementation of Temporal
SIVIA in cross-platform compute shaders via WebGPU and WGSL.
We implement interval arithmetic and reverse-mode automatic
differentiation in our shader using IntervalArithmetic.jl [Sanders
et al. 2022] and ChainRules.jl [White et al. 2023] as reference. Like
both Keeter [2020] and Sharp and Jacobson [2022], we do not account
for floating-point rounding errors. Our implementation evaluates 𝑓
and its gradients using an interpreter loop similar to Keeter [2020].
This adds tremendous runtime overhead to our evaluations and is
not fundamentally required for Temporal SIVIA. We could instead
code-generate native GPU interval and autodiff code on the CPU to
improve performance, but this speedup would apply equally to our
algorithm and per-frame SIVIA and would thus not influence our
relative performance results presented in Section 5.
Algorithm 2 implements Temporal SIVIA. It assumes that each

box [𝒃] contains additional fields including a set of child boxes
[𝒃].children, a bound on the local field [𝒃] .[𝑭], a timestamp [𝒃] .𝑡 , an
accumulated error [𝒃] .𝜹 , and a boolean [𝒃].fast to flag fast-changing
regions. We note that [𝒃] .[𝑭] is used only to guide our visualization
pass and can thus be replaced in practice by a ternary flag that
classifies [𝒃] as either filled, empty, or indeterminate. In the first
frame of an animation, we initialize [𝑫].children to an empty set
and zero out its other fields. The first call to Algorithm 2 then builds
an octree-like hierarchy rooted at [𝑫] by recursively populating its
children. Subsequent runs of the algorithm on [𝑫] in each timestep
then incrementally update the hierarchy.

4.6.1 Parallelization. We parallelize our algorithm using a persis-
tent thread scheduling model [Aila and Laine 2009; Gupta et al.
2012] where long-running threads saturate the GPU and continually
fetch work from a global work-distribution queue [Kerbl et al. 2018]
until it is eventually emptied and all active threads are finished their
tasks. This flexible approach allows us to easily map a recursive
workload like SIVIA to a single shader stage with real code that
very closely resembles the pseudocode provided in Algorithm 2.

The Line 3while-loop is parallelized over eachwarp and the Line 7
for-loop is parallelized over each thread within the warp. Lines 4-6
are executed only by thread 0 in each warp using workgroup shared
memory to communicate with the other threads. To terminate the
shader, we use a global atomic integerW to track whether any
work is left to be done. We incrementW upon each Deqeue() and
decrement it once per warp from thread 0 after all threads break
from the Line 7 for-loop. If the queue is ever emptied and the Line 4
dequeue fails then we checkW. If it is zero then we terminate all
the threads, otherwise we continue looping as there must exist some
thread in flight that may produce new work.

For simplicity, our implementation uses only 8 of the 32 available
threads per warp. We could therefore easily improve our runtime
by increasing the GPU occupancy but this speedup would apply
equally to our algorithm and per-frame SIVIA and would thus not
influence our relative performance results presented in Section 5.

4.6.2 Memory Management. Our algorithm requires a runtime
memory management solution to allocate and deallocate octree
nodes as the surfaces moves and occupies new space over time.

Algorithm 2: Temporal SIVIA
Input: Range-boundable function 𝑓 : R𝑛 → R𝑚 , octree root

and search domain [𝑫], current time 𝑡 ∈ R, function
parameterization history C (𝑡) ∈ R𝜏 , spatial error
tolerance 𝜀 ∈ R, temporal error tolerance 𝜹 ∈ R𝑚 ,
fast threshold 𝜅 ∈ R𝑚

Output: An octree rooted at [𝑫] encoding 𝑃 ′
𝑖𝑛
, 𝑃 ′𝑜𝑢𝑡 , 𝑃 ′𝑖 .

1 Q← ParallelQueue()
2 Q.enqeue([𝑫])
3 while Q ≠ ∅ do in parallel
4 [𝑩] ← Q.deqeue()
5 new← [𝑩].children = ∅
6 if new then [𝑩].children← Subdivide([𝑩])
7 for [𝒃] ∈ [𝑩].children do in parallel
8 𝑡𝑙 ← [𝒃] .𝑡
9 [𝒃] .𝑡 ← 𝑡

10 if 𝑤 ([𝒃]) ≤ 𝜀 then
11 [𝒃].[𝑭] ← 𝑓 (Center([𝒃]), C (𝑡))
12 continue

13 if new ∨ [𝑩].fast then
14 [𝒃].[𝑭] ← 𝑓 ([𝒃], C (𝑡))
15 if Classify([𝒃].[𝑭]) = indeterminate then
16 Q.enqeue([𝒃])
17 else
18 Destroy([𝒃].children)
19 continue

20 [𝒄] ← [C (𝑡𝑙), C (𝑡)]𝑢
21 [𝒃].[𝑭] ← 𝑓 ([𝒃], [𝒄])
22 if Classify([𝒃].[𝑭]) ≠ indeterminate then
23 Destroy([𝒃].children)
24 continue

25 [𝚫𝒇] ←MeasureChange([𝒃], [𝒄])
26 [𝒃].𝜹 ← [𝒃].𝜹 + [𝚫𝒇]
27 [𝒃].fast← 𝑎𝑛𝑦 (| [𝚫𝒇] 𝑗 |+ ≥ 𝜅 𝑗)
28 if any([𝒃].𝜹 𝑗 > 𝜹 𝑗) ∨ [𝒃] .children = ∅ then
29 [𝒃].𝜹 ← 0
30 Q.enqeue([𝒃])

31 return [𝑫]

We use a parallel queue [Kerbl et al. 2018] to implement a fixed-
size memory allocator that distributes indices into a flat vector of
boxes representing the tree. The Subdivide operation on Line 6 of
Algorithm 2 uniformly subdivides the current box and allocates the
memory for its child sub-boxes by deallocating indices from the
memory pool or, if it is empty, incrementing a global atomic integer
to generate a new index. The dequeue operation then simply returns
an index to the pool to free the associated memory.

4.6.3 Visualization. Our algorithm constructs an explicit tree of
nested uniform grids stored in a flat 2 GB vector of boxes where
each box stores its children as an array of indices into the vector.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:10 • Kavosh Jazar and Paul G. Kry

We visualize this octree-like structure via raytracing using a per-
ray stack to recursively descend the tree, and fast voxel traversal
[Amanatides and Woo 1987] to march through the uniform grids.
Our construction algorithm uses Keeter-style point sampling in
the indeterminate leaf boxes and thus our rays simply stop when
they encounter a filled box. For lighting, we evaluate the surface
normal at the hit point via finite difference of the implicit field
using floating-point arithmetic. Compared to octree construction
and maintenance, primary-ray tracing is generally quite fast even in
our unoptimized implementation (∼5 ms at 10243 spatial resolution
with 1spp at 1080p). In Section 6 we discuss alternative strategies for
normal evaluation and indeterminate box rendering. To visualize
the non-uniform structures produced by our contraction scheme
in Section 6.3, we interleave ray-AABB intersection tests [Majercik
et al. 2018] into our recursive ray traversal.

4.6.4 Workflow. Our implicit scenes begin as GLSL shaders like
those found on platforms like Shadertoy. They’re then compiled
by LLVM [Lattner and Adve 2004] using a Swizzling library to
translate the syntax to C++. We then parse the LLVM intermediate
representation (IR) into a custom instruction format for interval
evaluation and autodiff by our WGSL interpreter loop. We rely on a
set of compiler flags and optimizations to minimize the number of
branches and memory moves in the IR as our interpreter handles
only scalar floating-point instructions. Still, some shaders require
manual adjustment to produce parsable output. Note this is not a
fundamental limitation and we can, in future, extend our implemen-
tation to differentiate through control-flow as well [Innes 2018]. For
per-pixel normals via finite-difference, we translate the GLSL shader
to WGSL via NAGA [2023] for direct inclusion into our visualization
shader. This entire compilation pipeline takes on the order of ∼5 s
on an i7 3930k CPU.

5 PERFORMANCE
The runtime of our algorithm depends on the moving surface area
per timestep and we can therefore achieve arbitrarily large speedups
compared to per-frame SIVIA by simply increasing the ratio of static
to dynamic geometry in our test scenes. These speedups however
come at the cost of accuracy. Our temporal error tolerance 𝛿 controls
this tradeoff according to Equation 16 and thus acts like a second
user-adjustable detail slider to accompany the spatial resolution
slider 𝜀. We compare our algorithm to per-frame SIVIA on a number
of test scenes at various values of 𝛿 and 𝜀 on an RTX 3080 GPU.
Our visualizations show in red the regions that were evaluated

in each timestep to demonstrate how our algorithm localizes per-
frame updates near local surface deformations. At higher values of 𝛿 ,
fewer per-frame updates occur, leading to larger speedups at the cost
of increased visual artifacts. Table 1 quantitatively compares our
algorithm to per-frame SIVIA (𝛿 = 0.0) at various 𝛿 = 0.01, 0.03, 0.06
at octree resolutions 10243 and 2563 in terms of average per-frame
runtime, total speedups, and average per-frame speedups. Figure 8
shows more explicitly the per-frame speedups on our test scenes
at 10243 octree resolution. Figure 12 shows close-up views of the
artifacts and update patterns on the surface of our scenes to give a
qualitative sense for how 𝛿 controls our octree quality.

0 250 500 750 1000 1250
1
2
4
8
16
32
64
128
256
512
1024
2048

Timestep

Sp
on

za
Sp

ee
du

p
Fa
ct
or

δ = 0.06
δ = 0.03
δ = 0.01

0 100 200 300 400
1

2

4

8

16

32

Timestep
Sp

ag
he
tti

Sp
ee
du

p
Fa
ct
or

δ = 0.06
δ = 0.03
δ = 0.01

0 20 40 60 80 100 120
1

2

4

8

16

32

Timestep

Cr
ad
le
Sp

ee
du

p
Fa
ct
or

δ = 0.06
δ = 0.03
δ = 0.01

0 100 200 300
1
2
4
8
16
32
64
128
256

Timestep

Pi
an
o
Sp

ee
du

p
Fa
ct
or

δ = 0.06
δ = 0.03
δ = 0.01

Fig. 8. Semi-log plots of per-timestep speedup factors of our algorithm at
various 𝛿 compared to per-frame SIVIA (𝛿 = 0.0) at 10243 octree resolution.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Temporal Set Inversion for Animated Implicits • 1:11

5.1 Test Scenes
We note that many implicit scenes found on platforms like Shader-
toy do not work well with interval subdivision approaches in our
experience as they are not typically designed with discontinuities,
interval overapproximation, or branching instructions in mind. We
describe here our 4 main test scenes.

Sponza. This scene, shown in Figure 9, demonstrates a translating
blob smoothly blending into a complex static environment, and most
closely resembles the intended use-case for our method in games.
It is based on the implicit Sponza scene by Shadertoy user mmer-
chante [Merchante 2018] and contains 306 scalar SSA instructions.
Figure 12a shows a close-up view of the varying update patterns
and artifacts produced by different settings of 𝛿 on a 10243 octree.

Spaghetti. This scene, shown in Figure 1, demonstrates themotion
of a meatball within a ring of spaghetti. It is based on the Cables2
scene by Shadertoy user yuntaRobo [2020] and contains 296 scalar
SSA instructions. Figure 12b highlights the artifacts in this scene at
the various 𝛿 . Of our 4 tests scenes, this has by far the lowest ratio of
static to dynamic geometry and thus yields the smallest speedups.

Cradle. This scene, shown in Figure 10, is based on the Newton’s
Cradle scene by Shadertoy user BigWIngs [Steinrucken 2021] and
contains 328 scalar SSA instructions. Figure 12c shows a closeup of
the surface at various 𝛿 . Note the middle three balls are not static.

Piano. This scene, shown in Figure 11, is based on the Piano scene
by Shadertoy user iq [Quilez 2013] and contains 324 scalar SSA
instructions. Note that after the large initial speedup from 𝛿 = 0.0
to 𝛿 = 0.01, varying 𝛿 does not significantly impact the speedup
factor. Interestingly, this is the only scene for which increasing 𝛿
sometimes yields a worse average per-frame speedup, as seen in
Tables 1 and 3. This may be due to the fast evaluations of Section 4.4.

6 EXTENSIONS
In this section, we discuss various extensions to our algorithm
enabled by the local gradient bounds available within each box.
We again focus on scalar𝑚 = 1 field functions for simplicity.

6.1 Lipschitz Correction
We note that our temporal error tolerance 𝛿 is a unitless quantity
that simply bounds the allowed variation in the field between the
−𝛿 and 𝛿 isosurfaces according to Equation 16. The thickness of
this error layer therefore varies across the domain according to the
local Lipschitz bounds of 𝑓 . To correct for this, we simply divide
nonzero [Δ𝑓] by the lower bound on the local gradient magnitude
to translate error in the field to a bound on the surface displacement
in distance units. Table 2 gives the resulting performance metrics.

These local gradient bounds however are often extremely conser-
vative and thus this correction may greatly overapproximate the
local surface displacement and lead to unnecessary re-evaluations.
Regions with zero-crossing gradient bounds and nonzero pre-norma-
lized change can now no longer tolerate any amount of error in
the field and are thus forced to re-evaluate in every timestep, thus
resulting in costly updates far from the motion. To illustrate this

Fig. 9. Snapshots of our “Sponza” scene at frames 236, 365, 437 and 602.
Regions colored red were evaluated in the latest timestep. Here 𝛿 = 0.01 at
10243 octree resolution.

Fig. 10. “Cradle” scene snapshots at frames 11 and 40. Red regions were
evaluated in the latest timestep. Here 𝛿 = 0.01 at 10243 octree resolution.

Fig. 11. Snapshots of our “Piano” scene at frames 87 and 190 showing a
wave propagating through the keys of a piano. Regions colored red were
evaluated in the latest timestep. Here 𝛿 = 0.01 at 10243 octree resolution.

effect, we add to our test scene fields an infinitesimal global time-
varying perturbation to ensure the change is nowhere zero, as
would be the case if our scenes were deforming under the influence
of a non-finitely supported blending operation. The results are
shown in Figure 13 and the corresponding performance metrics
of this stress test are given in Table 3. The higher-order range-
bounding techniques discussed in Section 3.1.1 may render this
approach more practical by better bounding the gradients. We
note that many implicit models of interest (e.g., on Shadertoy) are
approximate signed distance fields where change in the implicit field
value translates almost directly to surface displacement in object-
space units. For such scenes, Lipschitz correction is not necessary.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:12 • Kavosh Jazar and Paul G. Kry

(a) Cropped view of frame 962 of our “Sponza” scene. Here the blob has already reached the right edge of the scene and is moving back towards the left.

(b) Cropped view of frame 330 of our “Spaghetti” scene. Here the meatball is moving towards the left.

(c) Cropped view of frame 35 of our “Cradle” scene. Here the ball on the left is moving towards the right. Note the right ball is not static.

(d) Cropped view of frame 190 of our “Piano” scene. Here the wave is moving towards the right.

Fig. 12. Update patterns and temporal artifacts in our pavings at 𝛿 = 0.0, 0.01, 0.03 and 0.06. Regions colored red were evaluated in the current timestep.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Temporal Set Inversion for Animated Implicits • 1:13

Fig. 13. Lipschitz-normalized scenes with 𝛿 = 0.01 now bounding the
maximum surface displacement in distance units where the total scene
width is 10 units. To each field we’ve added a small global time-varying
perturbation to ensure the change is nowhere zero. At 10243, this bounds
the error in the paving to within two leaf boxes of the ground truth. Regions
whose gradient bounds contain zero cannot tolerate any error and must
thus re-evaluate every frame, resulting in red regions far from the motion.

Fig. 14. Swept volume of our Sponza scene at 5123 with 𝛿 = 0.01. Please
refer to our supplemental video for swept volumes of our other test scenes.

6.2 Swept Volumes
Our algorithm easily adapts to the problem of efficiently deriving
a bounded-error swept volume defined formally as the continuous
union of an animated implicit volume over time via

X =
⋃

𝑡 ∈ [𝑡]
𝑓 −1𝑡 ([−∞, 0]). (27)

To do this, we simply disable the box deallocations from Section 4.6.2,
the fast evaluations from Section 4.4, and the temporal contractions
from Section 6.4, and evaluate newly allocated boxes on Line 14 of
Algorithm 2 over the latest timestep instead of at the current time 𝑡 .
We early-terminate the line 7 for-loop if the current box [𝒃] is not
new and [𝒃] .[𝐹]+ < 0 to avoid re-paving already-filled regions.
This approach overcomes the main limitations of “stamping”

techniques which approximate X as a union of the implicit vol-
ume at a finite set of discrete timesteps. As noted by Sellán et al.
[2021], the stamping frequency required to achieve alias-free out-
put depends on the local scene complexity and surface velocity.
Faithfully capturing thin, fast-moving features therefore requires
full-scene re-discretization at many small timesteps. Our approach
instead evaluates 𝑓 over continuous time via interval arithmetic,
re-discretizes only the moving surface frontier in each step, and au-
tomatically varies the local stamping rate over the search domain by
re-evaluating regions as infrequently as possible while maintaining
a bounded-error approximation of the surface at all times. Figure 14
shows swept volumes of our test scenes.

An alternative approach to deriving swept volumes using interval
arithmetic without Temporal SIVIA would be to simply pave the

Table 1. Performance metrics of our algorithm on our test scenes at various
octree resolutions (Res)3 for various values of 𝛿 . For each configuration
we report the average frametime in ms (Avg. FT), the total speedup factor
(Speedup) over the animation, and the average per-frame speedup factor
(Avg. Speedup). Timings do not include visualization, only octree updates.

Res 𝛿 Avg. FT Speedup Avg. Speedup

Sponza

1024

0.0 1304.05 1 1
0.01 66.17 19.71 71.95
0.03 31.47 41.44 126.01
0.06 19.56 66.68 193.99

256

0.0 85.70 1 1
0.01 7.03 12.19 16.02
0.03 4.70 18.25 22.16
0.06 3.58 23.92 28.33

Spaghet

1024

0.0 686.04 1 1
0.01 224.82 3.05 3.10
0.03 120.34 5.70 5.92
0.06 55.02 12.47 13.38

256

0.0 37.82 1 1
0.01 12.06 3.14 3.16
0.03 10.73 3.52 3.55
0.06 8.28 4.57 4.63

Cradle

1024

0.0 217.85 1 1
0.01 35.76 6.09 6.66
0.03 26.86 8.11 9.19
0.06 21.67 10.05 11.63

256

0.0 20.38 1 1
0.01 5.64 3.61 3.72
0.03 4.99 4.09 4.20
0.06 4.66 4.38 4.51

Piano

1024

0.0 540.87 1 1
0.01 18.86 28.68 87.84
0.03 17.08 31.67 92.37
0.06 14.05 38.50 98.42

256

0.0 39.32 1 1
0.01 2.92 13.48 14.86
0.03 2.96 13.29 14.59
0.06 2.90 13.54 14.94

domain in one shot over the entire time interval [𝑡]. This approach
however is non-interactive and extremely inefficient as the long
time interval exaggerates the interval overapproximation beyond
practicality. We note the numerical continuation method proposed
by Sellán et al. [2021] is otherwise orthogonal to our approach.

6.3 Gradient Contraction
To accelerate the convergence of SIVIA, inclusion functions can in
general be replaced by interval contractors [Benhamou et al. 1999;
Chabert and Jaulin 2009] which utilize constraint propagation to
shave off empty parts of an input box [𝒃] to produce a potentially
smaller box [𝒃′] such that no feasible points are lost in the process.
These contraction operations require a full linear-time backwards
pass over the forward interval trace of 𝑓 similar to reverse-mode
automatic differentiation. At the end of this process, the input box is

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:14 • Kavosh Jazar and Paul G. Kry

0 2 4 6
−3
−2
−1
0

1

2

3

𝑥∗− 𝑥∗+

𝑥− 𝑥+
𝑓−

𝑓+

Fig. 15. Gradient contraction visualization. Suppose that 𝑓 ([𝑥]) = [−2, 2]
over an interval [𝑥] = [0, 6]. This bounds the function within the gray
box. Suppose also that 0.5 = | [𝜕𝑓/𝜕𝑥 ([𝑥])] |− is a known lower bound
on the magnitude of the derivative of 𝑓 with respect to 𝑥 over [𝑥]. This
bounds the function within the red zone between the two red lines. We
then intersect this zone with the x-axis to derive a contraction of the input
domain [𝑥∗] = [𝑥∗−, 𝑥∗+] = [2, 4] that bounds the feasible root locations.

not guaranteed to contract at all andwe find this outcome is common
on the complex implicit functions in our test scenes. Contractions
can therefore sometimes increase the overall runtime.
We instead propose a constant-time gradient-based contraction

scheme inspired by the interval Newtonmethod [Hansen and Green-
berg 1983] that acts where the field is locally continuous and prov-
ably monotonic using the freely-available local gradient information
required for our main algorithm. Suppose for example that 𝑓 ([𝑥]) =
[−2, 2] over [𝑥] = [0, 6] where 𝜕𝑓/𝜕𝑥 ([𝑥]) = [0.5, 5]. We note the
function 𝑓 cannot be defined below the line 0.5𝑥−2 or above the line
0.5(𝑥 − 6) + 2 as 𝑓 cannot change slow enough to reach these areas.
More formally, if∃ 𝑥 ′ ∈ [𝑥], 𝑓 (𝑥 ′) < 0.5𝑥 ′−2∨𝑓 (𝑥 ′) > 0.5(𝑥 ′−6)+2
then, by the mean value theorem, there must exist some 𝑥 ′′ in the
open interval (𝑥−, 𝑥+) where our known gradient bound is violated.
This thick linear bound on the function can then be intersected with
the x-axis to bound the feasible root-locations over the domain via

[𝑥∗−, 𝑥∗+] = [𝑥] ∩
(−𝑓 ([𝑥])

𝑀
+ [𝑥]−

)
∩

(−𝑓 ([𝑥])
𝑀

+ [𝑥]+
)

where𝑀 = sign
(
𝜕𝑓

𝜕𝑥
([𝑥])

)
·
���� 𝜕𝑓𝜕𝑥 ([𝑥])����−

(28)

Like constraint-based contractors, this scheme is not guaranteed to
restrict the domain and in our case often does not due to overap-
proximated gradient bounds, but comes at almost no additional cost.
Higher-order range-bounding techniques that more tightly bound
the gradients may yield improved performance. Figure 15 illustrates
this process and Figure 16 applies it component-wise to each box in
a low-resolution paving of a sphere to produce a smoother result.

6.4 Temporal Contraction
The gradient-based contraction scheme described in Section 6.3
applies just as well in the temporal axis where it reduces to a simple
inclusion relationship. If [Δ𝑓] over a box [𝒃] over a time interval [𝑡]
is strictly positive or negative, this implies the field everywhere in
[𝒃] is monotonically increasing or decreasing. We can use this fact
to obtain a tighter bound on the field over [𝒃] at 𝑡+ to potentially

Table 2. Performance metrics of our algorithm on our test scenes at various
octree resolutions (Res)3 for various values of 𝛿 using Lipschitz correction
as described in Section 6.1. For each configuration we report the average
frametime in ms (Avg. FT), the total speedup factor (Speedup) over the
animation, as well as the average per-frame speedup factor (Avg. Speedup).

Res 𝛿 Avg. FT Speedup Avg. Speedup

Sponza

1024

0.0 1304.05 1 1
0.01 115.15 11.32 28.52
0.03 74.99 17.39 40.40
0.06 56.82 22.95 48.86

256

0.0 85.70 1 1
0.01 10.82 7.92 9.69
0.03 9.35 9.17 10.90
0.06 8.51 10.06 11.68

Spaghet

1024

0.0 686.04 1 1
0.01 285.00 2.41 2.42
0.03 284.54 2.41 2.43
0.06 281.68 2.44 2.45

256

0.0 37.82 1 1
0.01 12.19 3.10 3.14
0.03 12.14 3.11 3.14
0.06 12.17 3.11 3.13

Cradle

1024

0.0 217.85 1 1
0.01 45.64 4.77 5.07
0.03 35.69 6.10 6.52
0.06 31.85 6.84 7.35

256

0.0 20.38 1 1
0.01 6.24 3.26 3.32
0.03 5.76 3.54 3.59
0.06 5.52 3.69 3.76

Piano

1024

0.0 540.87 1 1
0.01 18.90 28.62 87.53
0.03 18.84 28.72 86.56
0.06 18.68 28.95 88.93

256

0.0 39.32 1 1
0.01 2.96 13.26 14.41
0.03 2.91 13.50 14.74
0.06 2.91 13.51 14.93

Fig. 16. Gradient contraction of a low-resolution 323 paving (left) of a sphere
produces a smoother result (right). The effect is less noticeable at higher
resolutions and where the gradients are less tightly bounded. Note that
boxes can better conform to the surface where the field is nearly axis-aligned.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Temporal Set Inversion for Animated Implicits • 1:15

Fig. 17. Using contractions along the time axis, we can prove infeasible a
portion of the previously indeterminate ghost region from Figure 7, visually
reducing its density. Note the fast optimization from Section 4.4 is disabled.

disambiguate otherwise indeterminate boxes. Suppose for example
that 𝑓 ([𝒃], [𝑡]) = [−1, 12] and [Δ𝑓] = [2, 3]. This implies the field
over [𝒃] at 𝑡+ is bounded by [1, 12]. For general 𝑓 more formally,

𝑓 ([𝒃], C(𝒕+)) ⊆ 𝑓 ([𝒃], [𝒄]) ∩ 𝑓 ([𝒃], [𝒄]) + [𝚫𝒇]
where [𝒄] = [C (𝑡−), C (𝑡+)]𝑢
and [𝚫𝒇] as in Equation 26.

(29)

Figure 17 shows the results of this temporal contraction scheme.
Like the spatial contractions described in Section 6.3, this scheme
has minimal runtime benefit in our test scenes but runs in constant
time using the freely available local gradient information and thus
cannot harm runtime performance.

6.5 Normals
The surface normals of an implicit volume are defined by the gra-
dients of the field function ∇𝑓 . Our algorithm already bounds the
local field gradient within each box and it therefore seems natural
to re-used this information for rendering purposes, but we do not
recommend this. As discussed in Section 4.6.3, we point-sample
the field in the center of each indeterminate leaf box to counteract
interval overapproximation and clean up discontinuities. This may,
however, remove the surface layer of the octree and thus expose the
underlying internal nodes of 𝑃𝑖𝑛 whose gradients we evaluate not at
points but over large spacetime volumes, making them unsuitable
for rendering purposes. Figure 18 illustrates this effect. Without
point-sampling this issue is largely resolved but we can now see
the discontinuities in the field as discussed in Section 3.2.1. Our
solution is to simply recalculate the normals per-pixel during the
visualization pass via floating-point finite-difference of the implicit
field. Keeter [2020] uses a similar strategy via per-pixel forward-
mode automatic differentiation.

6.6 Ray Marching in Leaves
The raytracing techniques described in Section 2.1 can easily be
used within the leaves of our octree to improve the visual quality
of low-resolution pavings. By starting rays close to the surface and
exploiting the freely-available local gradient information required

Table 3. Performance metrics of our algorithm on our test scenes under a
small global time-varying perturbation at various octree resolutions (Res)3
for various values of 𝛿 using Lipschitz correction as described in Section 6.1.
For each configuration we report the average frametime in ms (Avg. FT), the
total speedup factor (Speedup) over the animation, as well as the average
per-frame speedup factor (Avg. Speedup).

Res 𝛿 Avg. FT Speedup Avg. Speedup

Sponza

1024

0.0 1304.5 1 1
0.01 330.12 3.95 4.09
0.03 288.09 4.53 4.60
0.06 270.17 4.83 4.87

256

0.0 85.70 1 1
0.01 43.05 1.99 2.00
0.03 41.61 2.06 2.07
0.06 40.81 2.10 2.10

Spaghet

1024

0.0 686.04 1 1
0.01 546.75 1.25 1.26
0.03 548.56 1.25 1.25
0.06 542.32 1.27 1.27

256

0.0 37.82 1 1
0.01 36.95 1.02 1.02
0.03 36.96 1.02 1.02
0.06 37.02 1.02 1.02

Cradle

1024

0.0 218.85 1 1
0.01 45.93 4.74 5.03
0.03 36.27 6.01 6.42
0.06 32.18 6.77 7.24

256

0.0 20.38 1 1
0.01 6.79 3.00 3.04
0.03 6.27 3.25 3.30
0.06 6.04 3.38 3.43

Piano

1024

0.0 540.87 1 1
0.01 80.51 6.72 6.93
0.03 80.43 6.72 6.94
0.06 80.30 6.74 6.95

256

0.0 39.32 1 1
0.01 12.97 3.03 3.05
0.03 12.90 3.05 3.07
0.06 12.91 3.05 3.06

for our main algorithm, we perform Lipschitz-corrected sphere-
tracing using only∼3march steps per box compared to the hundreds
that are typically required for artifact-free results.

In practice, sphere-traced rays often pass throughmodulo-induced
discontinuities in empty space without visual artifacts. Sphere-
tracing the leaves of our octree therefore allows us to disable the
point-sampling discussed in Section 3.2.1 to avoid the surface-layer
stripping issue described in Section 6.5 without also visualizing the
indeterminate leaf boxes around zero-straddling discontinuities in
the field. Note that due to the non-conservative nature of our octree,
parts of the interface between 𝑃 ′𝑜𝑢𝑡 and 𝑃 ′

𝑖
where such rays start

marching may lie inside the implicit volume. This is rarely an issue
in practice. Figure 19 illustrates the resultant gain in visual quality.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:16 • Kavosh Jazar and Paul G. Kry

7 FUTURE WORK
We identify several opportunities for potential related research on
animated temporally-coherent set inversion in computer graphics.

7.1 View-Dependence
For pure visualization tasks where a global discretization is not re-
quired, our algorithm can be further accelerated by introducing view-
dependent effects like ray-guided subdivision [Crassin et al. 2009]
where octree construction and maintenance is interleaved with
raytracing passes that atomically accumulate ray/box intersections
to determine the set of currently visible boxes that require further
subdivsion. This effectively restricts the per-frame re-evaluations
to only the unoccluded, visibly-moving surfaces.
The temporal error tolerance 𝛿 can likewise be made view de-

pendant to update occluded, distant, or out-of-frustum boxes less
frequently. By varying 𝛿 by the dot product of the viewing ray with
the surface normal, we can also reduce temporal artifacts on object
silhouettes where the are most noticeable. If combining SIVIA with
raymarching as described in Section 6.6 then one may augment our
algorithm to not subdivide the search space until all indeterminate
boxes are sufficiently small, but until the Lipschitz constants within
each box are bounded to a sufficient tightness, thereby allowing
raymarchers to operate more efficiently.

7.2 Function Approximation
Merging our algorithm with the function approximation strategies
described in Section 3.2.2 is a promising avenue for future research.
Constructing such a combined algorithm however is highly non-
trivial as a program specialized over a box [𝑩] over a time interval
[[𝑩] .𝑡, 𝑡] cannot be used in its child box [𝒃] over a potentially
longer time interval [[𝒃] .𝑡, 𝑡]. Child programs are therefore not
guaranteed to be subsets of their parent’s programs and would need
to temporally accumulate in some fashion.

7.3 Healing
The main limitation of our current algorithm is that high-error
regions of the octree remain high-error indefinitely if no further
motion is detected in the area. One would ideally wish to “heal” such
regions over time by potentially dedicating some fraction of the per-
frame runtime to re-evaluating high-error boxes in static regions
where artifacts are most noticeable. This would enable the use of
larger 𝛿 values with greater speedups at similar levels of perceived
error. Localizing such artifacted regions however is highly nontrivial
due to the non-hierarchical nature of [𝒃] .𝛿 described in Section 4.3.

7.4 Program Transformations
The interactive implicit modelling process involves not just the
manipulation of object transforms and shape parameters but the
addition and removal of shapes which discontinuously transform
the computational graph of 𝑓 . Our algorithm does not currently
support temporally coherent updates in such cases and instead
performs a full octree rebuild upon structural changes to 𝑓 itself. For
small localized transformations, one could in principle re-pave only
the regions of space where the change in the field with respect to

Fig. 18. Keeter-style point-sampling strips off the surface layer of the octree,
revealing internal nodes with gradients unsuitable for rendering purposes
(left). Disabling point-sampling (right) largely fixes this issue but reveals
the discontinuities in the field as discussed in Section 3.2.1. Point-sampling
the normals per-pixel at visualization time resolves this issue.

Fig. 19. Raymarching through the leaf boxes of a 2563 octree (left) produces
a smooth result (right) which is almost indistinguishable from a 10243 octree.

the modified subexpression is sufficiently high, but more extensive
transformations may require more sophisticated program analysis.
An additional consideration is the time required to recompile 𝑓

and upload the transformed instructions to the GPU. Our current
workflow described in Section 4.6.4 is slow to update due to the
LLVM compilation step. A dedicated compiler that directly outputs
interval and autodiff code in WGSL would be ideal to speedup the
workflow and sidestep the large interpreter overhead at runtime.

8 CONCLUSION
In summary, ourwork introduces a novel temporally-coherent SIVIA
variant that allows us to trade temporal accuracy for speed. We
apply our algorithm to the computer graphics problem of animated
implicit surface rendering and achieve significant speedups in com-
plex scenes with localized deformations commonly found in games
and modelling applications where interactivity is required, a global
discretization is desired, and bounded-error approximation is accept-
able. We augment our algorithm to efficiently render bounded-error
swept volumes and extend it via gradient-based contractions and
raymarching through low-resolution voxelizations. Finally, we pro-
vide an in-depth discussion on state-of-the-art interval subdivision
schemes in computer graphics from the set inversion perspective
and outline promising directions for future research in this area.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Temporal Set Inversion for Animated Implicits • 1:17

ACKNOWLEDGMENTS
We’d like to thank Inigo Quilez, David P. Sanders, and Luc Jaulin
for their inspiring work, as well as Joey Litalien, Michael Kenzel,
Connor Fitzgerald, Kenny Erleben, and the anonymous reviewers
for their help. We also acknowledge the support of the Natural
Sciences and Engineering Research Council of Canada (NSERC).

REFERENCES
T. Aila and S. Laine. 2009. Understanding the Efficiency of Ray Traversal on GPUs.

In Proceedings of the Conference on High Performance Graphics 2009 (New Orleans,
Louisiana) (HPG ’09). Association for Computing Machinery, New York, NY, USA,
145–149. https://doi.org/10.1145/1572769.1572792

G. Allen. 2019. nTopology Modeling Technology. https://ntopology.com/resources/
whitepaper-implicit-modeling-technology/. Accessed: 2022-09-01.

J. Amanatides and A. Woo. 1987. A Fast Voxel Traversal Algorithm for Ray Tracing. In
EG 1987-Technical Papers. Eurographics Association, 3–10. https://doi.org/10.2312/
egtp.19871000

W. Barth, R. Lieger, and M. Schindler. 1994. Ray tracing general parametric surfaces
using interval arithmetic. The Visual Computer 10, 7 (01 Aug 1994), 363–371. https:
//doi.org/10.1007/BF01900662

F. Benhamou, F. Goualard, L. Granvilliers, and J.-F. Puget. 1999. Revising Hull and Box
Consistency. In INT. CONF. ON LOGIC PROGRAMMING. MIT press, 230–244.

M. Berz and G. Hoffstätter. 1998. Computation and Application of Taylor Polynomials
with Interval Remainder Bounds. Reliable Computing 4, 1 (Feb. 1998), 83–97.

A. Bouthors and M. Nesme. 2007. Twinned meshes for dynamic triangulation of implicit
surfaces. In Proceedings of Graphics Interface 2007 (Montréal, Québec, Canada) (GI
2007). 3–9.

G. Chabert and L. Jaulin. 2009. Contractor programming. Artificial Intelligence
173, 11 (2009), 1079–1100. https://www.sciencedirect.com/science/article/pii/
S0004370209000381

L. D. Comba and J. Stolfi. 1990. Affine Arithmetic and Its Applications to Computer
Graphics.

C. Crassin, F. Neyret, S. Lefebvre, and E. Eisemann. 2009. GigaVoxels: Ray-Guided
Streaming for Efficient and Detailed Voxel Rendering. In Proceedings of the 2009
Symposium on Interactive 3D Graphics and Games (Boston, Massachusetts) (I3D
’09). Association for Computing Machinery, New York, NY, USA, 15–22. https:
//doi.org/10.1145/1507149.1507152

A. De Cusatis, L. De Figueiredo, and M. Gattass. 1999. Interval methods for ray casting
implicit surfaces with affine arithmetic. In XII Brazilian Symposium on Computer
Graphics and Image Processing (Cat. No.PR00481). 65–71. https://doi.org/10.1109/
SIBGRA.1999.805711

F. De Goes and D. L. James. 2017. Regularized Kelvinlets: Sculpting Brushes Based on
Fundamental Solutions of Elasticity. ACM Trans. Graph. 36, 4, Article 40 (jul 2017),
11 pages. https://doi.org/10.1145/3072959.3073595

B. Desrochers and L. Jaulin. 2017. Thick set inversion. Artificial Intelligence 249 (2017),
1–18. https://doi.org/10.1016/j.artint.2017.04.004

J. Deussen, J. Riehme, and U. Naumann. 2016. Automation of significance analyses
with interval splitting. In Parallel Computing: On the Road to Exascale. IOS Press,
731–740.

J. Díaz, M. Sbert, J. Casellas, and I. i. A. Universitat de Girona. Departament d’Electrònica.
2008. Improvements in the Ray Tracing of Implicit Surfaces Based on Interval Arithmetic.
Universitat de Girona. Escola Politècnica Superior. Departament d’Electrònica,
Informàtica i Automàtica. https://books.google.dk/books?id=brsRzQEACAAJ

T. Duff. 1992. Interval Arithmetic Recursive Subdivision for Implicit Functions and
Constructive Solid Geometry. SIGGRAPH Comput. Graph. 26, 2 (jul 1992), 131–138.
https://doi.org/10.1145/142920.134027

O. Fryazinov, A. Pasko, and P. Comninos. 2010. Fast reliable interrogation of
procedurally defined implicit surfaces using extended revised affine arithmetic.
Computers & Graphics 34, 6 (2010), 708–718. https://doi.org/10.1016/j.cag.2010.07.
003 Graphics for Serious Games Computer Graphics in Spain: a Selection of Papers
from CEIG 2009 Selected Papers from the SIGGRAPH Asia Education Program.

E. Galin, E. Guérin, A. Paris, and A. Peytavie. 2020. Segment Tracing Using Local
Lipschitz Bounds. Computer Graphics Forum 39, 2 (2020), 545–554.

M. Gleicher andM. Kass. 1992. An interval refinement technique for surface intersection.
In Proceedings of Graphics Interface ’92 (Vancouver, British Columbia, Canada)
(GI ’92). Canadian Human-Computer Communications Society, Toronto, Ontario,
Canada, 242–249. http://graphicsinterface.org/wp-content/uploads/gi1992-28.pdf

O. Gourmel, A. Pajot, M. Paulin, L. Barthe, and P. Poulin. 2010. Fitted BVH for Fast
Raytracing of Metaballs. Computer Graphics Forum 29, 2 (2010), 281–288. https:
//doi.org/10.1111/j.1467-8659.2009.01597.x

K. Gupta, J. A. Stuart, and J. D. Owens. 2012. A study of Persistent Threads style GPU
programming for GPGPU workloads. In 2012 Innovative Parallel Computing (InPar).
1–14. https://doi.org/10.1109/InPar.2012.6339596

E. Hansen and R. Greenberg. 1983. An interval Newton method. Appl. Math. Comput.
12, 2 (1983), 89–98. https://doi.org/10.1016/0096-3003(83)90001-2

E. R. Hansen. 1992. Global optimization using interval analysis.
J. C. Hart. 1996. Sphere tracing: A geometric method for the antialiased ray tracing of

implicit surfaces. The Visual Computer 12, 10 (1996), 527–545.
J. C. Hart, E. Bachta,W. Jarosz, and T. Fleury. 2002. Using Particles to Sample and Control

More Complex Implicit Surfaces. In SMI ’02: Proceedings of the Shape Modeling
International 2002 (SMI’02). IEEE Computer Society, Washington, DC, USA, 129.

M. Innes. 2018. Don’t unroll adjoint: Differentiating ssa-form programs. In arXiv
preprint arXiv:1810.07951.

L. Jaulin, M. Kieffer, O. Didrit, and E. Walter. 2001. Applied Interval Analysis with
Examples in Parameter and State Estimation, Robust Control and Robotics. Springer
London Ltd. 398 pages. https://hal.archives-ouvertes.fr/hal-00845131

L. Jaulin and E. Walter. 1993. Set inversion via interval analysis for nonlinear bounded-
error estimation. Automatica 29, 4 (1993), 1053–1064. https://doi.org/10.1016/0005-
1098(93)90106-4

D. Jevans, B. Wyvill, and G. Wyvill. 1988. Speeding up 3-D animation for simulation. In
Proceedings of the Fourth SCS Multiconference on Multiprocessors and Array Processors.
94–100.

T. Ju, F. Losasso, S. Schaefer, and J. Warren. 2002. Dual contouring of hermite data.
In Proceedings of the 29th annual conference on Computer graphics and interactive
techniques. 339–346.

M. J. Keeter. 2020. Massively Parallel Rendering of Complex Closed-Form Implicit
Surfaces. ACM Trans. Graph. 39, 4, Article 141 (jul 2020), 10 pages. https://doi.org/
10.1145/3386569.3392429

B. Kerbl, M. Kenzel, J. H. Mueller, D. Schmalstieg, and M. Steinberger. 2018. The Broker
Queue: A Fast, Linearizable FIFO Queue for Fine-Granular Work Distribution on the
GPU. In Proceedings of the 2018 International Conference on Supercomputing (Beijing,
China) (ICS ’18). Association for Computing Machinery, New York, NY, USA, 76–85.
https://doi.org/10.1145/3205289.3205291

A. Knoll, Y. Hijazi, A. Kensler, M. Schott, C. Hansen, and H. Hagen. 2009. Fast Ray
Tracing of Arbitrary Implicit Surfaces with Interval and Affine Arithmetic. Computer
Graphics Forum 28, 1 (2009), 26–40. https://doi.org/10.1111/j.1467-8659.2008.01189.x

J. Korndörfer, B. Keinert, U. Ganse, M. Sänger, S. Ley, K. Burkhardt, M. Spuler, and
J. Heusipp. 2015. HG_SDF: A glsl library for building signed distance functions.
https://mercury.sexy/hg_sdf. Accessed: 2021-07-28.

C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation (CGO ’04). IEEE Computer Society, USA, 75.

R. Levien. 2021. Prefix sum on portable compute shaders. https://raphlinus.github.io/
gpu/2021/11/17/prefix-sum-portable.html

W. E. Lorensen and H. E. Cline. 1987. Marching Cubes: A High Resolution 3D Surface
Construction Algorithm. In Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’87). Association for Computing
Machinery, New York, NY, USA, 163–169. https://doi.org/10.1145/37401.37422

A. Majercik, C. Crassin, P. Shirley, and M. McGuire. 2018. A Ray-Box Intersection
Algorithm and Efficient Dynamic Voxel Rendering. Journal of Computer Graphics
Techniques (JCGT) 7, 3 (20 September 2018), 66–81. http://jcgt.org/published/0007/
03/04/

M. Merchante. 2018. Sponza pt2. Shadertoy. https://www.shadertoy.com/view/ltGcRW
A. Mercier-Aubin, A. Winter, D. I. W. Levin, and P. G. Kry. 2022. Adaptive Rigidification

of Elastic Solids. ACM Trans. Graph. 41, 4, Article 71 (jul 2022), 11 pages. https:
//doi.org/10.1145/3528223.3530124

D. Merrill and M. Garland. 2016. Single-pass parallel prefix scan with decoupled look-back.
Technical Report. NVIDIA, Tech. Rep. NVR-2016-002.

D. P. Mitchell. 1990. Robust Ray Intersection with Interval Arithmetic. In Proceedings
of Graphics Interface ’90 (Halifax, Nova Scotia, Canada) (GI ’90). Canadian Man-
Computer Communications Society, Toronto, Ontario, Canada, 68–74. http://
graphicsinterface.org/wp-content/uploads/gi1990-8.pdf

R. Moore. 1966. Interval Analysis. Prentice-Hall.
NAGA 2023. NAGA: Universal Shader Translation in Rust. GitHub. https://github.

com/gfx-rs/naga
A. Opalach and M.-P. Cani. 1997. Local Deformation for Animation of Implicit Surfaces.

In Spring Conference on Computer Graphics (SCCG).
I. Quilez. 2008. Rendering Worlds with Two Triangles with raytracing on the GPU in

4096 bytes. (2008). NVSCENE 08.
I. Quilez. 2013. Piano. Shadertoy. https://www.shadertoy.com/view/ldl3zN
D. Ratz. 1996. An optimized interval slope arithmetic and its application. Inst. für

Angewandte Mathematik.
S. Redon, Y. J. Kim, M. C. Lin, and D. Manocha. 2005. Fast Continuous Collision

Detection for Articulated Models. Journal of Computing and Information Science in
Engineering 5, 2 (2005), 126–137. https://doi.org/10.1115/1.1884133

J. Riehme and U. Naumann. 2015. Significance Analysis for Numerical Models. In 1st
WorkShop on Approximate Computing (WAPCO 2015).

D. P. Sanders. 2020. Fast global optimization on the GPU. JuliaCon 2020. https:
//live.juliacon.org/uploads/posters/8K8P7R.pdf

D. P. Sanders, L. Benet, L. Ferranti, K. Agarwal, B. Richard, J. Grawitter, E. Gupta,
M. Forets, M. F. Herbst, yashrajgupta, E. Hanson, B. van Dyk, C. Rackauckas, R.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1145/1572769.1572792
https://ntopology.com/resources/whitepaper-implicit-modeling-technology/
https://ntopology.com/resources/whitepaper-implicit-modeling-technology/
https://doi.org/10.2312/egtp.19871000
https://doi.org/10.2312/egtp.19871000
https://doi.org/10.1007/BF01900662
https://doi.org/10.1007/BF01900662
https://www.sciencedirect.com/science/article/pii/S0004370209000381
https://www.sciencedirect.com/science/article/pii/S0004370209000381
https://doi.org/10.1145/1507149.1507152
https://doi.org/10.1145/1507149.1507152
https://doi.org/10.1109/SIBGRA.1999.805711
https://doi.org/10.1109/SIBGRA.1999.805711
https://doi.org/10.1145/3072959.3073595
https://doi.org/10.1016/j.artint.2017.04.004
https://books.google.dk/books?id=brsRzQEACAAJ
https://doi.org/10.1145/142920.134027
https://doi.org/10.1016/j.cag.2010.07.003
https://doi.org/10.1016/j.cag.2010.07.003
http://graphicsinterface.org/wp-content/uploads/gi1992-28.pdf
https://doi.org/10.1111/j.1467-8659.2009.01597.x
https://doi.org/10.1111/j.1467-8659.2009.01597.x
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1016/0096-3003(83)90001-2
https://hal.archives-ouvertes.fr/hal-00845131
https://doi.org/10.1016/0005-1098(93)90106-4
https://doi.org/10.1016/0005-1098(93)90106-4
https://doi.org/10.1145/3386569.3392429
https://doi.org/10.1145/3386569.3392429
https://doi.org/10.1145/3205289.3205291
https://doi.org/10.1111/j.1467-8659.2008.01189.x
https://mercury.sexy/hg_sdf
https://raphlinus.github.io/gpu/2021/11/17/prefix-sum-portable.html
https://raphlinus.github.io/gpu/2021/11/17/prefix-sum-portable.html
https://doi.org/10.1145/37401.37422
http://jcgt.org/published/0007/03/04/
http://jcgt.org/published/0007/03/04/
https://www.shadertoy.com/view/ltGcRW
https://doi.org/10.1145/3528223.3530124
https://doi.org/10.1145/3528223.3530124
http://graphicsinterface.org/wp-content/uploads/gi1990-8.pdf
http://graphicsinterface.org/wp-content/uploads/gi1990-8.pdf
https://github.com/gfx-rs/naga
https://github.com/gfx-rs/naga
https://www.shadertoy.com/view/ldl3zN
https://doi.org/10.1115/1.1884133
https://live.juliacon.org/uploads/posters/8K8P7R.pdf
https://live.juliacon.org/uploads/posters/8K8P7R.pdf

1:18 • Kavosh Jazar and Paul G. Kry

Vasani, S. Miclut,a-Câmpeanu, S. Olver, T. Koolen, C. Wormell, D. Karrasch, F. A.
Vázquez, G. Dalle, J. Sarnoff, J. TagBot, K. O’Bryant, K. Carlsson, M. Piibeleht, M.
Giordano, Ryan, R. Deits, and T. Holy. 2022. JuliaIntervals/IntervalArithmetic.jl:
v0.20.8. https://doi.org/10.5281/zenodo.7257716

R. Schmidt. 2006. Interactive Modeling with Implicit Surfaces. Master’s thesis. The
University of Calgary.

R. Schmidt, B. Wyvill, and E. Galin. 2005. Interactive implicit modeling with hierarchical
spatial caching. In International Conference on Shape Modeling and Applications 2005
(SMI’ 05). 104–113. https://doi.org/10.1109/SMI.2005.25

S. Sellán, N. Aigerman, and A. Jacobson. 2021. Swept Volumes via Spacetime Numerical
Continuation. ACM Trans. Graph. 40, 4, Article 55 (jul 2021), 11 pages. https:
//doi.org/10.1145/3450626.3459780

D. Seyb, A. Jacobson, D. Nowrouzezahrai, and W. Jarosz. 2019. Non-Linear Sphere
Tracing for Rendering Deformed Signed Distance Fields. ACM Trans. Graph. 38, 6,
Article 229 (nov 2019), 12 pages. https://doi.org/10.1145/3355089.3356502

N. Sharp and A. Jacobson. 2022. Spelunking the Deep: Guaranteed Queries on General
Neural Implicit Surfaces via Range Analysis. ACM Trans. Graph. 41, 4, Article 107
(jul 2022), 16 pages. https://doi.org/10.1145/3528223.3530155

J. M. Snyder. 1992. Interval Analysis for Computer Graphics. SIGGRAPH Comput.
Graph. 26, 2 (jul 1992), 121–130. https://doi.org/10.1145/142920.134024

J. M. Snyder, A. R. Woodbury, K. Fleischer, B. Currin, and A. H. Barr. 1993. Interval
Methods for Multi-Point Collisions between Time-Dependent Curved Surfaces. In
Proceedings of the 20th Annual Conference on Computer Graphics and Interactive
Techniques (Anaheim, CA) (SIGGRAPH ’93). Association for Computing Machinery,
New York, NY, USA, 321–334. https://doi.org/10.1145/166117.166158

J. Stam and R. Schmidt. 2011. On the Velocity of an Implicit Surface. ACM Trans. Graph.
30, 3, Article 21 (may 2011), 7 pages. https://doi.org/10.1145/1966394.1966400

M. Steinrucken. 2021. Newton’s Cradle Tutorial. Shadertoy. https://www.shadertoy.
com/view/sdsXWr

J. Tupper. 2001. Reliable Two-Dimensional Graphing Methods for Mathematical
Formulae with Two Free Variables. In Proceedings of the 28th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’01). Association for
Computing Machinery, New York, NY, USA, 77–86. https://doi.org/10.1145/383259.

383267
V. Vassiliadis, J. Riehme, J. Deussen, K. Parasyris, C. D. Antonopoulos, N. Bellas,

S. Lalis, and U. Naumann. 2016. Towards Automatic Significance Analysis for
Approximate Computing. In Proceedings of the 2016 International Symposium on
Code Generation and Optimization (Barcelona, Spain) (CGO ’16). Association for
Computing Machinery, New York, NY, USA, 182–193. https://doi.org/10.1145/
2854038.2854058

X.-H. Vu, D. Sam-Haroud, and B. Faltings. 2009. Enhancing numerical constraint
propagation using multiple inclusion representations. Annals of Mathematics and
Artificial Intelligence 55, 3 (March 2009), 295.

B. Wang, Z. Ferguson, T. Schneider, X. Jiang, M. Attene, and D. Panozzo. 2021. A
Large-Scale Benchmark and an Inclusion-Based Algorithm for Continuous Collision
Detection. ACM Trans. Graph. 40, 5, Article 188 (sep 2021), 16 pages. https://doi.
org/10.1145/3460775

F. White, M. Abbott, M. Zgubic, J. Revels, S. Axen, A. Arslan, S. Schaub, N. Robinson, Y.
Ma, G. Dhingra, W. Tebbutt, D. Widmann, N. Heim, N. Schmitz, A. D. W. Rosemberg,
C. Rackauckas, C. Lucibello, R. Heintzmann, frankschae, A. Noack, K. Fischer, A.
Robson, J. F. de Cossio-Diaz, J. Ling, mattBrzezinski, R. Finnegan, A. Zhabinski,
D. Wennberg, M. Besançon, and P. Vertechi. 2023. JuliaDiff/ChainRules.jl: v1.48.0.
https://doi.org/10.5281/zenodo.7669643

A. P. Witkin and P. S. Heckbert. 1994. Using Particles to Sample and Control Implicit
Surfaces. In Proceedings of the 21st Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’94). 269–277. https://doi.org/10.1145/192161.
192227

B. Wyvill, A. Guy, and E. Galin. 1999. Extending the CSG Tree. Warping, Blending and
Boolean Operations in an Implicit Surface Modeling System. Computer Graphics
Forum 18, 2 (1999), 149–158. https://doi.org/10.1111/1467-8659.00365

R. Young. 1931. The algebra of many-valued quantities. Math. Ann. 104 (1931), 260–290.
http://eudml.org/doc/159462

yuntaRobo. 2020. cables2. Shadertoy. https://www.shadertoy.com/view/wlKXWc
X. Zhang, S. Redon, M. Lee, and Y. J. Kim. 2007. Continuous Collision Detection for

Articulated Models Using Taylor Models and Temporal Culling. 26, 3 (jul 2007),
15–es. https://doi.org/10.1145/1276377.1276396

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.5281/zenodo.7257716
https://doi.org/10.1109/SMI.2005.25
https://doi.org/10.1145/3450626.3459780
https://doi.org/10.1145/3450626.3459780
https://doi.org/10.1145/3355089.3356502
https://doi.org/10.1145/3528223.3530155
https://doi.org/10.1145/142920.134024
https://doi.org/10.1145/166117.166158
https://doi.org/10.1145/1966394.1966400
https://www.shadertoy.com/view/sdsXWr
https://www.shadertoy.com/view/sdsXWr
https://doi.org/10.1145/383259.383267
https://doi.org/10.1145/383259.383267
https://doi.org/10.1145/2854038.2854058
https://doi.org/10.1145/2854038.2854058
https://doi.org/10.1145/3460775
https://doi.org/10.1145/3460775
https://doi.org/10.5281/zenodo.7669643
https://doi.org/10.1145/192161.192227
https://doi.org/10.1145/192161.192227
https://doi.org/10.1111/1467-8659.00365
http://eudml.org/doc/159462
https://www.shadertoy.com/view/wlKXWc
https://doi.org/10.1145/1276377.1276396

	Abstract
	1 Introduction
	2 Related Work
	2.1 Raytracing
	2.2 Meshing
	2.3 Branch-and-Bound Subdivision
	2.4 Temporal Coherence

	3 Preliminaries
	3.1 Interval Arithmetic
	3.2 Set Inversion via Interval Analysis

	4 Temporal SIVIA
	4.1 Error Invariant
	4.2 Measuring Change
	4.3 Updating Pavings
	4.4 Fast Evaluations
	4.5 Generalization
	4.6 Implementation

	5 Performance
	5.1 Test Scenes

	6 Extensions
	6.1 Lipschitz Correction
	6.2 Swept Volumes
	6.3 Gradient Contraction
	6.4 Temporal Contraction
	6.5 Normals
	6.6 Ray Marching in Leaves

	7 Future work
	7.1 View-Dependence
	7.2 Function Approximation
	7.3 Healing
	7.4 Program Transformations

	8 Conclusion
	Acknowledgments
	References

